Publikation: A deep neural network model for multi-view human activity recognition
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Multiple cameras are used to resolve occlusion problem that often occur in single-view human activity recognition. Based on the success of learning representation with deep neural networks (DNNs), recent works have proposed DNNs models to estimate human activity from multi-view inputs. However, currently available datasets are inadequate in training DNNs model to obtain high accuracy rate. Against such an issue, this study presents a DNNs model, trained by employing transfer learning and shared-weight techniques, to classify human activity from multiple cameras. The model comprised pre-trained convolutional neural networks (CNNs), attention layers, long short-term memory networks with residual learning (LSTMRes), and Softmax layers. The experimental results suggested that the proposed model could achieve a promising performance on challenging MVHAR datasets: IXMAS (97.27%) and i3DPost (96.87%). A competitive recognition rate was also observed in online classification.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PUTRA, Prasetia, Keisuke SHIMA, Koji SHIMATANI, 2022. A deep neural network model for multi-view human activity recognition. In: PLoS ONE. Public Library of Science (PLoS). 2022, 17(1), e0262181. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0262181BibTex
@article{Putra2022neura-66165, year={2022}, doi={10.1371/journal.pone.0262181}, title={A deep neural network model for multi-view human activity recognition}, number={1}, volume={17}, journal={PLoS ONE}, author={Putra, Prasetia and Shima, Keisuke and Shimatani, Koji}, note={Article Number: e0262181} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66165"> <dc:contributor>Shima, Keisuke</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66165"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-22T08:17:40Z</dcterms:available> <dc:creator>Shima, Keisuke</dc:creator> <dc:contributor>Putra, Prasetia</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66165/4/Putra_2-15y8g3h39tb987.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-02-22T08:17:40Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66165/4/Putra_2-15y8g3h39tb987.pdf"/> <dc:contributor>Shimatani, Koji</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:language>eng</dc:language> <dc:creator>Shimatani, Koji</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2022</dcterms:issued> <dc:creator>Putra, Prasetia</dc:creator> <dcterms:abstract>Multiple cameras are used to resolve occlusion problem that often occur in single-view human activity recognition. Based on the success of learning representation with deep neural networks (DNNs), recent works have proposed DNNs models to estimate human activity from multi-view inputs. However, currently available datasets are inadequate in training DNNs model to obtain high accuracy rate. Against such an issue, this study presents a DNNs model, trained by employing transfer learning and shared-weight techniques, to classify human activity from multiple cameras. The model comprised pre-trained convolutional neural networks (CNNs), attention layers, long short-term memory networks with residual learning (LSTMRes), and Softmax layers. The experimental results suggested that the proposed model could achieve a promising performance on challenging MVHAR datasets: IXMAS (97.27%) and i3DPost (96.87%). A competitive recognition rate was also observed in online classification.</dcterms:abstract> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:title>A deep neural network model for multi-view human activity recognition</dcterms:title> </rdf:Description> </rdf:RDF>