Publikation: A Note on Integer Parts of Real Closed Fields and the Axiom of Choice
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
An integer part I of a real closed field K is a discretely ordered subring with minimal element 1 such that, for every x in K, I contains some i such that x is between i and i+1 in the ordering of K. Mourgues and Ressayre showed that every real closed field has an integer part. Their construction implicitely uses the axiom of choice.
We show that the axiom of choice is actually necessary to obtain the result by constructing a transitive model of ZF (i.e. set theory without the axiom of choice) which contains a real closed field without an integer part. Then we analyze some cases where the axiom of choice is not necessary for obtaining an integer part. This also sheds some light on the possibility to effectivize constructions of integer parts.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CARL, Merlin, 2014. A Note on Integer Parts of Real Closed Fields and the Axiom of ChoiceBibTex
@unpublished{Carl2014Integ-29881, year={2014}, title={A Note on Integer Parts of Real Closed Fields and the Axiom of Choice}, author={Carl, Merlin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29881"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">An integer part I of a real closed field K is a discretely ordered subring with minimal element 1 such that, for every x in K, I contains some i such that x is between i and i+1 in the ordering of K. Mourgues and Ressayre showed that every real closed field has an integer part. Their construction implicitely uses the axiom of choice.<br /><br />We show that the axiom of choice is actually necessary to obtain the result by constructing a transitive model of ZF (i.e. set theory without the axiom of choice) which contains a real closed field without an integer part. Then we analyze some cases where the axiom of choice is not necessary for obtaining an integer part. This also sheds some light on the possibility to effectivize constructions of integer parts.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-19T09:14:23Z</dcterms:available> <dc:contributor>Carl, Merlin</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>A Note on Integer Parts of Real Closed Fields and the Axiom of Choice</dcterms:title> <dcterms:issued>2014</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29881"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Carl, Merlin</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-19T09:14:23Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>