Publikation:

A Note on Integer Parts of Real Closed Fields and the Axiom of Choice

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

An integer part I of a real closed field K is a discretely ordered subring with minimal element 1 such that, for every x in K, I contains some i such that x is between i and i+1 in the ordering of K. Mourgues and Ressayre showed that every real closed field has an integer part. Their construction implicitely uses the axiom of choice.

We show that the axiom of choice is actually necessary to obtain the result by constructing a transitive model of ZF (i.e. set theory without the axiom of choice) which contains a real closed field without an integer part. Then we analyze some cases where the axiom of choice is not necessary for obtaining an integer part. This also sheds some light on the possibility to effectivize constructions of integer parts.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CARL, Merlin, 2014. A Note on Integer Parts of Real Closed Fields and the Axiom of Choice
BibTex
@unpublished{Carl2014Integ-29881,
  year={2014},
  title={A Note on Integer Parts of Real Closed Fields and the Axiom of Choice},
  author={Carl, Merlin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29881">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">An integer part I of a real closed field K is a discretely ordered subring with minimal element 1 such that, for every x in K, I contains some i such that x is between i and i+1 in the ordering of K. Mourgues and Ressayre showed that every real closed field has an integer part. Their construction implicitely uses the axiom of choice.&lt;br /&gt;&lt;br /&gt;We show that the axiom of choice is actually necessary to obtain the result by constructing a transitive model of ZF (i.e. set theory without the axiom of choice) which contains a real closed field without an integer part. Then we analyze some cases where the axiom of choice is not necessary for obtaining an integer part. This also sheds some light on the possibility to effectivize constructions of integer parts.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-19T09:14:23Z</dcterms:available>
    <dc:contributor>Carl, Merlin</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>A Note on Integer Parts of Real Closed Fields and the Axiom of Choice</dcterms:title>
    <dcterms:issued>2014</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29881"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Carl, Merlin</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-19T09:14:23Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen