Publikation: Quality-driven Poisson-guided Autoscanning
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present a quality-driven, Poisson-guided autonomous scanning method. Unlike previous scan planning techniques, we do not aim to minimize the number of scans needed to cover the object’s surface, but rather to ensure the high quality scanning of the model. This goal is achieved by placing the scanner at strategically selected
Next-Best-Views (NBVs) to ensure progressively capturing the geometric details of the object, until both completeness and high fidelity are reached. The technique is based on the analysis of a Poisson field and its geometric relation with an input scan. We
generate a confidence map that reflects the quality/fidelity of the estimated Poisson iso-surface. The confidence map guides the generation of a viewing vector field, which is then used for computing a set of NBVs. We applied the algorithm on two different robotic platforms, a PR2 mobile robot and a one-arm industry robot. We demonstrated the advantages of our method through a number of autonomous high quality scannings of complex physical objects, as well as performance comparisons against state-of-the-art methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WU, Shihao, Wei SUN, Pinxin LONG, Hui HUANG, Daniel COHEN-OR, Minglun GONG, Oliver DEUSSEN, Baoquan CHEN, 2014. Quality-driven Poisson-guided Autoscanning. In: ACM Transactions on Graphics. 2014, 33(6), 203. ISSN 0730-0301. eISSN 1557-7368. Available under: doi: 10.1145/2661229.2661242BibTex
@article{Wu2014Quali-29847, year={2014}, doi={10.1145/2661229.2661242}, title={Quality-driven Poisson-guided Autoscanning}, number={6}, volume={33}, issn={0730-0301}, journal={ACM Transactions on Graphics}, author={Wu, Shihao and Sun, Wei and Long, Pinxin and Huang, Hui and Cohen-Or, Daniel and Gong, Minglun and Deussen, Oliver and Chen, Baoquan}, note={Proceedings of ACM SIGGRAPH Asia 2014, Shenzhen, China Article Number: 203} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29847"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Cohen-Or, Daniel</dc:contributor> <dcterms:issued>2014</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29847"/> <dc:contributor>Long, Pinxin</dc:contributor> <dc:creator>Wu, Shihao</dc:creator> <dc:contributor>Huang, Hui</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We present a quality-driven, Poisson-guided autonomous scanning method. Unlike previous scan planning techniques, we do not aim to minimize the number of scans needed to cover the object’s surface, but rather to ensure the high quality scanning of the model. This goal is achieved by placing the scanner at strategically selected<br />Next-Best-Views (NBVs) to ensure progressively capturing the geometric details of the object, until both completeness and high fidelity are reached. The technique is based on the analysis of a Poisson field and its geometric relation with an input scan. We<br />generate a confidence map that reflects the quality/fidelity of the estimated Poisson iso-surface. The confidence map guides the generation of a viewing vector field, which is then used for computing a set of NBVs. We applied the algorithm on two different robotic platforms, a PR2 mobile robot and a one-arm industry robot. We demonstrated the advantages of our method through a number of autonomous high quality scannings of complex physical objects, as well as performance comparisons against state-of-the-art methods.</dcterms:abstract> <dc:contributor>Gong, Minglun</dc:contributor> <dc:creator>Sun, Wei</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29847/3/Wu_0-262609.pdf"/> <dc:contributor>Wu, Shihao</dc:contributor> <dc:contributor>Chen, Baoquan</dc:contributor> <dc:creator>Gong, Minglun</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-18T09:08:09Z</dcterms:available> <dc:creator>Long, Pinxin</dc:creator> <dc:creator>Cohen-Or, Daniel</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Chen, Baoquan</dc:creator> <dc:creator>Huang, Hui</dc:creator> <dc:contributor>Deussen, Oliver</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29847/3/Wu_0-262609.pdf"/> <dcterms:title>Quality-driven Poisson-guided Autoscanning</dcterms:title> <dc:contributor>Sun, Wei</dc:contributor> <dc:creator>Deussen, Oliver</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-18T09:08:09Z</dc:date> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>