Publikation:

Clustering based on principal curve

Lade...
Vorschaubild

Dateien

Cleju_230303.pdf
Cleju_230303.pdfGröße: 158.74 KBDownloads: 227

Datum

2005

Autor:innen

Fränti, Pasi
Wu, Xiaolin

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

KALVIAINEN, Heikki, ed., Jussi PARKKINEN, ed., Arto KAARNA, ed.. Image Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 872-881. Lecture Notes in Computer Science. 3540. ISBN 978-3-540-26320-3. Available under: doi: 10.1007/11499145_88

Zusammenfassung

Clustering algorithms are intensively used in the image analysis field in compression, segmentation, recognition and other tasks. In this work we present a new approach in clustering vector datasets by finding a good order in the set, and then applying an optimal segmentation algorithm. The algorithm heuristically prolongs the optimal scalar quantization technique to vector space. The data set is sequenced using one-dimensional projection spaces. We Show that the principal axis is too rigid to preserve the adjacency of the points. We present a way to refine the order using the minimum weight Hamiltonian path in the data graph. Next we propose to use the principal curve to better model the non-linearity of the data and find a good sequence in the data. The experimental results show that the principal curve based clustering method can be successfully used in cluster analysis.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CLEJU, Ioan, Pasi FRÄNTI, Xiaolin WU, 2005. Clustering based on principal curve. In: KALVIAINEN, Heikki, ed., Jussi PARKKINEN, ed., Arto KAARNA, ed.. Image Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 872-881. Lecture Notes in Computer Science. 3540. ISBN 978-3-540-26320-3. Available under: doi: 10.1007/11499145_88
BibTex
@inproceedings{Cleju2005Clust-23030,
  year={2005},
  doi={10.1007/11499145_88},
  title={Clustering based on principal curve},
  number={3540},
  isbn={978-3-540-26320-3},
  publisher={Springer Berlin Heidelberg},
  address={Berlin, Heidelberg},
  series={Lecture Notes in Computer Science},
  booktitle={Image Analysis},
  pages={872--881},
  editor={Kalviainen, Heikki and Parkkinen, Jussi and Kaarna, Arto},
  author={Cleju, Ioan and Fränti, Pasi and Wu, Xiaolin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23030">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23030/1/Cleju_230303.pdf"/>
    <dc:creator>Wu, Xiaolin</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Fränti, Pasi</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-10T09:08:32Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23030/1/Cleju_230303.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Clustering based on principal curve</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Wu, Xiaolin</dc:contributor>
    <dc:contributor>Fränti, Pasi</dc:contributor>
    <dcterms:abstract xml:lang="eng">Clustering algorithms are intensively used in the image analysis field in compression, segmentation, recognition and other tasks. In this work we present a new approach in clustering vector datasets by finding a good order in the set, and then applying an optimal segmentation algorithm. The algorithm heuristically prolongs the optimal scalar quantization technique to vector space. The data set is sequenced using one-dimensional projection spaces. We Show that the principal axis is too rigid to preserve the adjacency of the points. We present a way to refine the order using the minimum weight Hamiltonian path in the data graph. Next we propose to use the principal curve to better model the non-linearity of the data and find a good sequence in the data. The experimental results show that the principal curve based clustering method can be successfully used in cluster analysis.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-10T09:08:32Z</dcterms:available>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23030"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2005</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Cleju, Ioan</dc:contributor>
    <dcterms:bibliographicCitation>Image Analysis : 14th Scandinavian Conference, SCIA, 2005, Joensuu, Finland, June 19 - 22, 2005; proceedings / Heikki Kalviainen ... (eds.). - Berlin [u.a.] : Springer, 2005. - S. 872-881. - (Lecture notes in computer science ; 3540). - ISBN 978-3-540-26320-3</dcterms:bibliographicCitation>
    <dc:creator>Cleju, Ioan</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen