Publikation:

PRS-on-Spark (PRSoS) : a novel, efficient and flexible approach for generating polygenic risk scores

Lade...
Vorschaubild

Dateien

Chen_2-15mhmfk7hxvd29.pdf
Chen_2-15mhmfk7hxvd29.pdfGröße: 1.19 MBDownloads: 413

Datum

2018

Autor:innen

Chen, Lawrence M.
Yao, Nelson
Garg, Elika
Zhu, Yuecai
Nguyen, Thao T. T.
Pokhvisneva, Irina
Hari Dass, Shantala A.
Gaudreau, Hélène
O'Donnell, Kieran J.
et al.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

BMC Bioinformatics. 2018, 19(1), 295. eISSN 1471-2105. Available under: doi: 10.1186/s12859-018-2289-9

Zusammenfassung

Background: Polygenic risk scores (PRS) describe the genomic contribution to complex phenotypes and consistently account for a larger proportion of variance in outcome than single nucleotide polymorphisms (SNPs) alone. However, there is little consensus on the optimal data input for generating PRS, and existing approaches largely preclude the use of imputed posterior probabilities and strand-ambiguous SNPs i.e., A/T or C/G polymorphisms. Our ability to predict complex traits that arise from the additive effects of a large number of SNPs would likely benefit from a more inclusive approach.

Results: We developed PRS-on-Spark (PRSoS), a software implemented in Apache Spark and Python that accommodates different data inputs and strand-ambiguous SNPs to calculate PRS. We compared performance between PRSoS and an existing software (PRSice v1.25) for generating PRS for major depressive disorder using a community cohort (N = 264). We found PRSoS to perform faster than PRSice v1.25 when PRS were generated for a large number of SNPs (~ 17 million SNPs; t = 42.865, p = 5.43E-04). We also show that the use of imputed posterior probabilities and the inclusion of strand-ambiguous SNPs increase the proportion of variance explained by a PRS for major depressive disorder (from 4.3% to 4.8%).

Conclusion: PRSoS provides the user with the ability to generate PRS using an inclusive and efficient approach that considers a larger number of SNPs than conventional approaches. We show that a PRS for major depressive disorder that includes strand-ambiguous SNPs, calculated using PRSoS, accounts for the largest proportion of variance in symptoms of depression in a community cohort, demonstrating the utility of this approach. The availability of this software will help users develop more informative PRS for a variety of complex phenotypes.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

PRS-on-spark, PRSoS, Polygenic risk score, Genetic profile score, Multi-core processing, Bioinformatics, Major depressive disorder

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHEN, Lawrence M., Nelson YAO, Elika GARG, Yuecai ZHU, Thao T. T. NGUYEN, Irina POKHVISNEVA, Shantala A. HARI DASS, Eva UNTERNAEHRER, Hélène GAUDREAU, Kieran J. O'DONNELL, 2018. PRS-on-Spark (PRSoS) : a novel, efficient and flexible approach for generating polygenic risk scores. In: BMC Bioinformatics. 2018, 19(1), 295. eISSN 1471-2105. Available under: doi: 10.1186/s12859-018-2289-9
BibTex
@article{Chen2018-08-08PRSon-44856,
  year={2018},
  doi={10.1186/s12859-018-2289-9},
  title={PRS-on-Spark (PRSoS) : a novel, efficient and flexible approach for generating polygenic risk scores},
  number={1},
  volume={19},
  journal={BMC Bioinformatics},
  author={Chen, Lawrence M. and Yao, Nelson and Garg, Elika and Zhu, Yuecai and Nguyen, Thao T. T. and Pokhvisneva, Irina and Hari Dass, Shantala A. and Unternaehrer, Eva and Gaudreau, Hélène and O'Donnell, Kieran J.},
  note={Article Number: 295}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44856">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Yao, Nelson</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44856/3/Chen_2-15mhmfk7hxvd29.pdf"/>
    <dc:contributor>Pokhvisneva, Irina</dc:contributor>
    <dc:contributor>Nguyen, Thao T. T.</dc:contributor>
    <dc:contributor>Unternaehrer, Eva</dc:contributor>
    <dc:creator>Yao, Nelson</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-05T12:22:39Z</dcterms:available>
    <dc:creator>Hari Dass, Shantala A.</dc:creator>
    <dc:contributor>Gaudreau, Hélène</dc:contributor>
    <dcterms:abstract xml:lang="eng">Background: Polygenic risk scores (PRS) describe the genomic contribution to complex phenotypes and consistently account for a larger proportion of variance in outcome than single nucleotide polymorphisms (SNPs) alone. However, there is little consensus on the optimal data input for generating PRS, and existing approaches largely preclude the use of imputed posterior probabilities and strand-ambiguous SNPs i.e., A/T or C/G polymorphisms. Our ability to predict complex traits that arise from the additive effects of a large number of SNPs would likely benefit from a more inclusive approach.&lt;br /&gt;&lt;br /&gt;Results: We developed PRS-on-Spark (PRSoS), a software implemented in Apache Spark and Python that accommodates different data inputs and strand-ambiguous SNPs to calculate PRS. We compared performance between PRSoS and an existing software (PRSice v1.25) for generating PRS for major depressive disorder using a community cohort (N = 264). We found PRSoS to perform faster than PRSice v1.25 when PRS were generated for a large number of SNPs (~ 17 million SNPs; t = 42.865, p = 5.43E-04). We also show that the use of imputed posterior probabilities and the inclusion of strand-ambiguous SNPs increase the proportion of variance explained by a PRS for major depressive disorder (from 4.3% to 4.8%).&lt;br /&gt;&lt;br /&gt;Conclusion: PRSoS provides the user with the ability to generate PRS using an inclusive and efficient approach that considers a larger number of SNPs than conventional approaches. We show that a PRS for major depressive disorder that includes strand-ambiguous SNPs, calculated using PRSoS, accounts for the largest proportion of variance in symptoms of depression in a community cohort, demonstrating the utility of this approach. The availability of this software will help users develop more informative PRS for a variety of complex phenotypes.</dcterms:abstract>
    <dc:creator>Chen, Lawrence M.</dc:creator>
    <dc:contributor>Zhu, Yuecai</dc:contributor>
    <dc:creator>Nguyen, Thao T. T.</dc:creator>
    <dcterms:title>PRS-on-Spark (PRSoS) : a novel, efficient and flexible approach for generating polygenic risk scores</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:creator>Unternaehrer, Eva</dc:creator>
    <dc:creator>Zhu, Yuecai</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Pokhvisneva, Irina</dc:creator>
    <dc:contributor>O'Donnell, Kieran J.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44856/3/Chen_2-15mhmfk7hxvd29.pdf"/>
    <dc:creator>Gaudreau, Hélène</dc:creator>
    <dc:creator>Garg, Elika</dc:creator>
    <dcterms:issued>2018-08-08</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Garg, Elika</dc:contributor>
    <dc:contributor>Hari Dass, Shantala A.</dc:contributor>
    <dc:creator>O'Donnell, Kieran J.</dc:creator>
    <dc:contributor>Chen, Lawrence M.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-05T12:22:39Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44856"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen