Publikation: Learning Pattern Graphs for Multivariate Temporal Pattern Retrieval
Lade...
Dateien
Datum
2012
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
HOLLMÉN, Jaakko, ed., Frank KLAWONN, ed., Allan TUCKER, ed.. Advances in Intelligent Data Analysis XI. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 264-275. Lecture Notes in Computer Science. 7619. ISBN 978-3-642-34155-7. Available under: doi: 10.1007/978-3-642-34156-4_25
Zusammenfassung
We propose a two-phased approach to learn pattern graphs, a powerful pattern language for complex, multivariate temporal data, which is capable of reflecting more aspects of temporal patterns than earlier proposals. The first phase aims at increasing the understandability of the graph by finding common substructures, thereby helping the second phase to specialize the graph learned so far to discriminate against undesired situations. The usefulness is shown on data from the automobile industry and the libras data set by taking the accuracy and the knowledge gain of the learned graphs into account.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
PETER, Sebastian, Frank HÖPPNER, Michael R. BERTHOLD, 2012. Learning Pattern Graphs for Multivariate Temporal Pattern Retrieval. In: HOLLMÉN, Jaakko, ed., Frank KLAWONN, ed., Allan TUCKER, ed.. Advances in Intelligent Data Analysis XI. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 264-275. Lecture Notes in Computer Science. 7619. ISBN 978-3-642-34155-7. Available under: doi: 10.1007/978-3-642-34156-4_25BibTex
@inproceedings{Peter2012Learn-23714, year={2012}, doi={10.1007/978-3-642-34156-4_25}, title={Learning Pattern Graphs for Multivariate Temporal Pattern Retrieval}, number={7619}, isbn={978-3-642-34155-7}, publisher={Springer Berlin Heidelberg}, address={Berlin, Heidelberg}, series={Lecture Notes in Computer Science}, booktitle={Advances in Intelligent Data Analysis XI}, pages={264--275}, editor={Hollmén, Jaakko and Klawonn, Frank and Tucker, Allan}, author={Peter, Sebastian and Höppner, Frank and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23714"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23714"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23714/1/Peter_237142.pdf"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23714/1/Peter_237142.pdf"/> <dc:creator>Peter, Sebastian</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-20T09:17:13Z</dcterms:available> <dcterms:abstract xml:lang="eng">We propose a two-phased approach to learn pattern graphs, a powerful pattern language for complex, multivariate temporal data, which is capable of reflecting more aspects of temporal patterns than earlier proposals. The first phase aims at increasing the understandability of the graph by finding common substructures, thereby helping the second phase to specialize the graph learned so far to discriminate against undesired situations. The usefulness is shown on data from the automobile industry and the libras data set by taking the accuracy and the knowledge gain of the learned graphs into account.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-20T09:17:13Z</dc:date> <dc:creator>Berthold, Michael R.</dc:creator> <dc:contributor>Peter, Sebastian</dc:contributor> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:title>Learning Pattern Graphs for Multivariate Temporal Pattern Retrieval</dcterms:title> <dc:creator>Höppner, Frank</dc:creator> <dcterms:issued>2012</dcterms:issued> <dcterms:bibliographicCitation>Advances in intelligent data analysis XI : 11th international symposium ; proceedings; IDA 2012, Helsinki, Finland, October 25 - 27, 2012 / Jaakko Hollmén ... (ed.). - Berlin [u.a.] : Springer, 2012. - S. 264-275. (Lecture notes in computer science ; 7619). - ISBN 978-3-642-34155-7</dcterms:bibliographicCitation> <dc:contributor>Höppner, Frank</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja