Publikation:

Learning Pattern Graphs for Multivariate Temporal Pattern Retrieval

Lade...
Vorschaubild

Dateien

Peter_237142.pdf
Peter_237142.pdfGröße: 5.74 MBDownloads: 302

Datum

2012

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

HOLLMÉN, Jaakko, ed., Frank KLAWONN, ed., Allan TUCKER, ed.. Advances in Intelligent Data Analysis XI. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 264-275. Lecture Notes in Computer Science. 7619. ISBN 978-3-642-34155-7. Available under: doi: 10.1007/978-3-642-34156-4_25

Zusammenfassung

We propose a two-phased approach to learn pattern graphs, a powerful pattern language for complex, multivariate temporal data, which is capable of reflecting more aspects of temporal patterns than earlier proposals. The first phase aims at increasing the understandability of the graph by finding common substructures, thereby helping the second phase to specialize the graph learned so far to discriminate against undesired situations. The usefulness is shown on data from the automobile industry and the libras data set by taking the accuracy and the knowledge gain of the learned graphs into account.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PETER, Sebastian, Frank HÖPPNER, Michael R. BERTHOLD, 2012. Learning Pattern Graphs for Multivariate Temporal Pattern Retrieval. In: HOLLMÉN, Jaakko, ed., Frank KLAWONN, ed., Allan TUCKER, ed.. Advances in Intelligent Data Analysis XI. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 264-275. Lecture Notes in Computer Science. 7619. ISBN 978-3-642-34155-7. Available under: doi: 10.1007/978-3-642-34156-4_25
BibTex
@inproceedings{Peter2012Learn-23714,
  year={2012},
  doi={10.1007/978-3-642-34156-4_25},
  title={Learning Pattern Graphs for Multivariate Temporal Pattern Retrieval},
  number={7619},
  isbn={978-3-642-34155-7},
  publisher={Springer Berlin Heidelberg},
  address={Berlin, Heidelberg},
  series={Lecture Notes in Computer Science},
  booktitle={Advances in Intelligent Data Analysis XI},
  pages={264--275},
  editor={Hollmén, Jaakko and Klawonn, Frank and Tucker, Allan},
  author={Peter, Sebastian and Höppner, Frank and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23714">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23714"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23714/1/Peter_237142.pdf"/>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23714/1/Peter_237142.pdf"/>
    <dc:creator>Peter, Sebastian</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-20T09:17:13Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">We propose a two-phased approach to learn pattern graphs, a powerful pattern language for complex, multivariate temporal data, which is capable of reflecting more aspects of temporal patterns than earlier proposals. The first phase aims at increasing the understandability of the graph by finding common substructures, thereby helping the second phase to specialize the graph learned so far to discriminate against undesired situations. The usefulness is shown on data from the automobile industry and the libras data set by taking the accuracy and the knowledge gain of the learned graphs into account.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-20T09:17:13Z</dc:date>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dc:contributor>Peter, Sebastian</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Learning Pattern Graphs for Multivariate Temporal Pattern Retrieval</dcterms:title>
    <dc:creator>Höppner, Frank</dc:creator>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:bibliographicCitation>Advances in intelligent data analysis XI : 11th international symposium ; proceedings; IDA 2012, Helsinki, Finland, October 25 - 27, 2012 / Jaakko Hollmén ... (ed.). - Berlin [u.a.] : Springer, 2012. - S. 264-275. (Lecture notes in computer science ; 7619). - ISBN 978-3-642-34155-7</dcterms:bibliographicCitation>
    <dc:contributor>Höppner, Frank</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen