Publikation:

Tracking the frequency of phytoplankton clonal lineages using multispectral image flow cytometry and neural networks

Lade...
Vorschaubild

Dateien

Hermann_2-156z74321xz8m6.pdf
Hermann_2-156z74321xz8m6.pdfGröße: 4.13 MBDownloads: 11

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): BE 4135/4‐2

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Methods in Ecology and Evolution. Wiley. 2024, 15(2), S. 401-412. ISSN 2041-2096. eISSN 2041-210X. Verfügbar unter: doi: 10.1111/2041-210x.14281

Zusammenfassung

  1. Testing fundamental theories of diversity and evolutionary change often requires tracking the frequencies of clonal lineages within a population over time. Current tracking methods in plankton and microbial systems are often labour-intensive, time-consuming, expensive and/or unavailable, especially when high temporal resolution of frequencies is required.

  2. The combination of multispectral imaging flow cytometry and neural networks (NN) could provide an efficient approach to classify clonal lineages by their heritable phenotypes and thus track their frequency changes. Here, we present a novel method that combines NN and feature values extracted from images to classify six clonal lineages of the green alga Chlamydomonas reinhardtii based on heritable morphological differences when paired in-silico and in-vitro. We compared different NN trained on all six clonal lineages or on pairs of two and compared the accuracy of the models.

  3. All NN were able to classify clonal lineages with very high accuracy and the NN trained on pairs of clonal lineages achieved the highest accuracy of 97%. Using in-vitro samples we observed a drop in accuracy to an average of 85%, which was due to the variation occurring between image acquisitions and culturing conditions causing differences in the extracted feature values.

  4. This method can be applied to reduce the workload and running costs of long-term lineage tracking, and it can be applied to a wide range of plankton and microbial organisms and research questions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

image flow cytometry, machine learning, multispectral imaging, neural networks, phytoplankton

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zitieren

ISO 690HERMANN, Ruben Joseph, Lutz BECKS, 2024. Tracking the frequency of phytoplankton clonal lineages using multispectral image flow cytometry and neural networks. In: Methods in Ecology and Evolution. Wiley. 2024, 15(2), S. 401-412. ISSN 2041-2096. eISSN 2041-210X. Verfügbar unter: doi: 10.1111/2041-210x.14281
BibTex
@article{Hermann2024-01-08Track-69222,
  title={Tracking the frequency of phytoplankton clonal lineages using multispectral image flow cytometry and neural networks},
  year={2024},
  doi={10.1111/2041-210x.14281},
  number={2},
  volume={15},
  issn={2041-2096},
  journal={Methods in Ecology and Evolution},
  pages={401--412},
  author={Hermann, Ruben Joseph and Becks, Lutz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69222">
    <dcterms:issued>2024-01-08</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-02T07:25:12Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:abstract>1. Testing fundamental theories of diversity and evolutionary change often requires tracking the frequencies of clonal lineages within a population over time. Current tracking methods in plankton and microbial systems are often labour-intensive, time-consuming, expensive and/or unavailable, especially when high temporal resolution of frequencies is required.

2. The combination of multispectral imaging flow cytometry and neural networks (NN) could provide an efficient approach to classify clonal lineages by their heritable phenotypes and thus track their frequency changes. Here, we present a novel method that combines NN and feature values extracted from images to classify six clonal lineages of the green alga Chlamydomonas reinhardtii based on heritable morphological differences when paired in-silico and in-vitro. We compared different NN trained on all six clonal lineages or on pairs of two and compared the accuracy of the models.

3. All NN were able to classify clonal lineages with very high accuracy and the NN trained on pairs of clonal lineages achieved the highest accuracy of 97%. Using in-vitro samples we observed a drop in accuracy to an average of 85%, which was due to the variation occurring between image acquisitions and culturing conditions causing differences in the extracted feature values.

4. This method can be applied to reduce the workload and running costs of long-term lineage tracking, and it can be applied to a wide range of plankton and microbial organisms and research questions.</dcterms:abstract>
    <dc:creator>Hermann, Ruben Joseph</dc:creator>
    <dc:contributor>Becks, Lutz</dc:contributor>
    <dcterms:title>Tracking the frequency of phytoplankton clonal lineages using multispectral image flow cytometry and neural networks</dcterms:title>
    <dc:contributor>Hermann, Ruben Joseph</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69222"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Becks, Lutz</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69222/1/Hermann_2-156z74321xz8m6.pdf"/>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/69222/1/Hermann_2-156z74321xz8m6.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-02-02T07:25:12Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Link zu Forschungsdaten
Beschreibung der Forschungsdaten
Code and data used in the manuscript
Diese Publikation teilen