Publikation: On Stability of Hyperbolic Thermoelastic Reissner-Mindlin-Timoshenko Plates
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the present article, we consider a thermoelastic plate of Reissner-Mindlin-Timoshenko type with the hyperbolic heat conduction arising from Cattaneo's law. In the absense of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, etc. We present a well-posedness result for the linear problem under general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped, thermally isolated plate, we show an exponential energy decay rate under a full damping for all elastic variables. Restricting the problem to the rotationally symmetric case, we further prove that a single frictional damping merely for the bending compoment is sufficient for exponential stability. To this end, we construct a Lyapunov functional incorporating the Bogovskii operator for irrotational vector fields which we discuss in the appendix.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
POKOJOVY, Michael, 2013. On Stability of Hyperbolic Thermoelastic Reissner-Mindlin-Timoshenko PlatesBibTex
@techreport{Pokojovy2013Stabi-25341, year={2013}, series={Konstanzer Schriften in Mathematik}, title={On Stability of Hyperbolic Thermoelastic Reissner-Mindlin-Timoshenko Plates}, number={324}, author={Pokojovy, Michael} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25341"> <dc:contributor>Pokojovy, Michael</dc:contributor> <dc:language>eng</dc:language> <dcterms:title>On Stability of Hyperbolic Thermoelastic Reissner-Mindlin-Timoshenko Plates</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-13T08:33:38Z</dcterms:available> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25341/1/Pokojovy_253410.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-13T08:33:38Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">In the present article, we consider a thermoelastic plate of Reissner-Mindlin-Timoshenko type with the hyperbolic heat conduction arising from Cattaneo's law. In the absense of any additional mechanical dissipations, the system is often not even strongly stable unless restricted to the rotationally symmetric case, etc. We present a well-posedness result for the linear problem under general mixed boundary conditions for the elastic and thermal parts. For the case of a clamped, thermally isolated plate, we show an exponential energy decay rate under a full damping for all elastic variables. Restricting the problem to the rotationally symmetric case, we further prove that a single frictional damping merely for the bending compoment is sufficient for exponential stability. To this end, we construct a Lyapunov functional incorporating the Bogovskii operator for irrotational vector fields which we discuss in the appendix.</dcterms:abstract> <dcterms:issued>2013</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/25341/1/Pokojovy_253410.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Pokojovy, Michael</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25341"/> </rdf:Description> </rdf:RDF>