Recent Developments in Location Estimation and Regression for Long-Memory Processes
Recent Developments in Location Estimation and Regression for Long-Memory Processes
No Thumbnail Available
Files
There are no files associated with this item.
Date
1993
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a collection
Publication status
Published in
New Directions in Time Series Analysis / Brillinger, David; Caines, Peter; Geweke, John; Parzen, Emanuel; Rosenblatt, Murray; Taqqu, Murad S. (ed.). - New York, NY : Springer New York, 1993. - (The IMA Volumes in Mathematics and its Applications ; 46). - pp. 1-9. - ISBN 978-1-4613-9298-9
Abstract
The problem of long-range dependence in statistical applications has been known to scientists and applied statisticians long before suitable models were known. Parsimonious models with such behaviour are stationary processes with non-summable correlations. Many classical limit theorems do not hold for these processes and rates of convergence are slower than under independence or weak dependence. Therefore, for many statistics, usual confidence intervals are too small by a factor which tends to infinity with increasing sample size. In this paper we give a survey of recent results on point and interval estimation of location and of the coefficients in parametric linear regression, as well as nonparametric regression.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
BERAN, Jan, 1993. Recent Developments in Location Estimation and Regression for Long-Memory Processes. In: BRILLINGER, David, ed., Peter CAINES, ed., John GEWEKE, ed., Emanuel PARZEN, ed., Murray ROSENBLATT, ed., Murad S. TAQQU, ed.. New Directions in Time Series Analysis. New York, NY:Springer New York, pp. 1-9. ISBN 978-1-4613-9298-9. Available under: doi: 10.1007/978-1-4613-9296-5_1BibTex
@incollection{Beran1993Recen-27587, year={1993}, doi={10.1007/978-1-4613-9296-5_1}, title={Recent Developments in Location Estimation and Regression for Long-Memory Processes}, number={46}, isbn={978-1-4613-9298-9}, publisher={Springer New York}, address={New York, NY}, series={The IMA Volumes in Mathematics and its Applications}, booktitle={New Directions in Time Series Analysis}, pages={1--9}, editor={Brillinger, David and Caines, Peter and Geweke, John and Parzen, Emanuel and Rosenblatt, Murray and Taqqu, Murad S.}, author={Beran, Jan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27587"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:bibliographicCitation>New Directions in Time Series Analysis : Part II / David Brillinger ... (eds.). - New York, NY : Springer, 1993. - S. 1-9. - (The IMA Volumes in Mathematics and its Applications ; 46). - ISBN 978-1-4613-9298-9</dcterms:bibliographicCitation> <dc:rights>terms-of-use</dc:rights> <dc:creator>Beran, Jan</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-23T09:32:52Z</dc:date> <dc:contributor>Beran, Jan</dc:contributor> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">The problem of long-range dependence in statistical applications has been known to scientists and applied statisticians long before suitable models were known. Parsimonious models with such behaviour are stationary processes with non-summable correlations. Many classical limit theorems do not hold for these processes and rates of convergence are slower than under independence or weak dependence. Therefore, for many statistics, usual confidence intervals are too small by a factor which tends to infinity with increasing sample size. In this paper we give a survey of recent results on point and interval estimation of location and of the coefficients in parametric linear regression, as well as nonparametric regression.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>1993</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-05-23T09:32:52Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27587"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Recent Developments in Location Estimation and Regression for Long-Memory Processes</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No