Publikation: Stability of large- and small-amplitude solitary waves in the generalized Korteweg-de Vries and Euler–Korteweg/Boussinesq equations
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2011
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Differential Equations. 2011, 251(9), pp. 2515-2533. ISSN 0022-0396. Available under: doi: 10.1016/j.jde.2011.06.016
Zusammenfassung
This paper establishes that solitary waves for the generalized Korteweg–de Vries equation and for the generalized Boussinesq equation are stable if the flux function p satisfies p″>0 and p‴⩽0.
While p″>0 alone suffices for the stability of waves of sufficiently small amplitude, obvious examples show that p‴⩽0 cannot be omitted in the general case.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Stability, Korteweg, Boussinesq, Solitons
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
HÖWING, Johannes, 2011. Stability of large- and small-amplitude solitary waves in the generalized Korteweg-de Vries and Euler–Korteweg/Boussinesq equations. In: Journal of Differential Equations. 2011, 251(9), pp. 2515-2533. ISSN 0022-0396. Available under: doi: 10.1016/j.jde.2011.06.016BibTex
@article{Howing2011Stabi-18225, year={2011}, doi={10.1016/j.jde.2011.06.016}, title={Stability of large- and small-amplitude solitary waves in the generalized Korteweg-de Vries and Euler–Korteweg/Boussinesq equations}, number={9}, volume={251}, issn={0022-0396}, journal={Journal of Differential Equations}, pages={2515--2533}, author={Höwing, Johannes} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18225"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Höwing, Johannes</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18225"/> <dcterms:title>Stability of large- and small-amplitude solitary waves in the generalized Korteweg-de Vries and Euler–Korteweg/Boussinesq equations</dcterms:title> <dc:contributor>Höwing, Johannes</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-02T07:40:30Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">This paper establishes that solitary waves for the generalized Korteweg–de Vries equation and for the generalized Boussinesq equation are stable if the flux function p satisfies p″>0 and p‴⩽0.<br />While p″>0 alone suffices for the stability of waves of sufficiently small amplitude, obvious examples show that p‴⩽0 cannot be omitted in the general case.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-02T07:40:30Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:bibliographicCitation>Publ. in: Journal of Differential Equations ; 251 (2011), 9. - S. 2515-2533</dcterms:bibliographicCitation> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2011</dcterms:issued> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja