Publikation:

Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE

Lade...
Vorschaubild

Dateien

Bernreuther_2-14ynfk4rb5c8r3.pdf
Bernreuther_2-14ynfk4rb5c8r3.pdfGröße: 8.08 MBDownloads: 169

Datum

2022

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

HERZOG, Roland, ed., Matthias HEINKENSCHLOSS, ed., Dante KALISE, ed. and others. Optimization and Control for Partial Differential Equations : Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin: De Gruyter, 2022, pp. 1-32. Radon Series on Computational and Applied Mathematics. 29. ISBN 978-3-11-069596-0. Available under: doi: 10.1515/9783110695984-001

Zusammenfassung

In this paper, an optimization problem governed by a nonsmooth semilinear elliptic partial differential equation is considered. A reduced order approach is applied in order to obtain a computationally fast and certified numerical solution approach. Using the reduced basis method and efficient a-posteriori error estimation for the primal and dual equations, an adaptive algorithm is developed and tested successfully for several numerical examples.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERNREUTHER, Marco, Georg MÜLLER, Stefan VOLKWEIN, 2022. Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE. In: HERZOG, Roland, ed., Matthias HEINKENSCHLOSS, ed., Dante KALISE, ed. and others. Optimization and Control for Partial Differential Equations : Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin: De Gruyter, 2022, pp. 1-32. Radon Series on Computational and Applied Mathematics. 29. ISBN 978-3-11-069596-0. Available under: doi: 10.1515/9783110695984-001
BibTex
@incollection{Bernreuther2022Reduc-49208.3,
  year={2022},
  doi={10.1515/9783110695984-001},
  title={Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE},
  number={29},
  isbn={978-3-11-069596-0},
  publisher={De Gruyter},
  address={Berlin},
  series={Radon Series on Computational and Applied Mathematics},
  booktitle={Optimization and Control for Partial Differential Equations : Uncertainty quantification, open and closed-loop control, and shape optimization},
  pages={1--32},
  editor={Herzog, Roland and Heinkenschloß, Matthias and Kalise, Dante},
  author={Bernreuther, Marco and Müller, Georg and Volkwein, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49208.3">
    <dcterms:title>Reduced basis model order reduction in optimal control of a nonsmooth semilinear elliptic PDE</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Müller, Georg</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49208.3"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49208.3/1/Bernreuther_2-14ynfk4rb5c8r3.pdf"/>
    <dc:creator>Volkwein, Stefan</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Bernreuther, Marco</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49208.3/1/Bernreuther_2-14ynfk4rb5c8r3.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-23T12:57:31Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-23T12:57:31Z</dcterms:available>
    <dc:creator>Bernreuther, Marco</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:abstract xml:lang="eng">In this paper, an optimization problem governed by a nonsmooth semilinear elliptic partial differential equation is considered. A reduced order approach is applied in order to obtain a computationally fast and certified numerical solution approach. Using the reduced basis method and efficient a-posteriori error estimation for the primal and dual equations, an adaptive algorithm is developed and tested successfully for several numerical examples.</dcterms:abstract>
    <dc:contributor>Volkwein, Stefan</dc:contributor>
    <dc:creator>Müller, Georg</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
3*
2021-02-23 12:37:23
2020-04-09 07:58:30
* Ausgewählte Version