Publikation:

On aggregation of strongly dependent time series

Lade...
Vorschaubild

Dateien

Beran_2-14refwn3q4zha6.pdf
Beran_2-14refwn3q4zha6.pdfGröße: 907.08 KBDownloads: 152

Datum

2020

Autor:innen

Ghosh, Sucharita

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Scandinavian Journal of Statistics. Wiley. 2020, 47(3), pp. 690-710. ISSN 0303-6898. eISSN 1467-9469. Available under: doi: 10.1111/sjos.12421

Zusammenfassung

We consider cross‐sectional aggregation of time series with long‐range dependence. This question arises for instance from the statistical analysis of networks where aggregation is defined via routing matrices. Asymptotically, aggregation turns out to increase dependence substantially, transforming a hyperbolic decay of autocorrelations to a slowly varying rate. This effect has direct consequences for statistical inference. For instance, unusually slow rates of convergence for nonparametric trend estimators and nonstandard formulas for optimal bandwidths are obtained. The situation changes, when time‐dependent aggregation is applied. Suitably chosen time‐dependent aggregation schemes can preserve a hyperbolic rate or even eliminate autocorrelations completely.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BERAN, Jan, Haiyan LIU, Sucharita GHOSH, 2020. On aggregation of strongly dependent time series. In: Scandinavian Journal of Statistics. Wiley. 2020, 47(3), pp. 690-710. ISSN 0303-6898. eISSN 1467-9469. Available under: doi: 10.1111/sjos.12421
BibTex
@article{Beran2020-09aggre-48631,
  year={2020},
  doi={10.1111/sjos.12421},
  title={On aggregation of strongly dependent time series},
  number={3},
  volume={47},
  issn={0303-6898},
  journal={Scandinavian Journal of Statistics},
  pages={690--710},
  author={Beran, Jan and Liu, Haiyan and Ghosh, Sucharita}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48631">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Beran, Jan</dc:contributor>
    <dc:creator>Ghosh, Sucharita</dc:creator>
    <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We consider cross‐sectional aggregation of time series with long‐range dependence. This question arises for instance from the statistical analysis of networks where aggregation is defined via routing matrices. Asymptotically, aggregation turns out to increase dependence substantially, transforming a hyperbolic decay of autocorrelations to a slowly varying rate. This effect has direct consequences for statistical inference. For instance, unusually slow rates of convergence for nonparametric trend estimators and nonstandard formulas for optimal bandwidths are obtained. The situation changes, when time‐dependent aggregation is applied. Suitably chosen time‐dependent aggregation schemes can preserve a hyperbolic rate or even eliminate autocorrelations completely.</dcterms:abstract>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48631/1/Beran_2-14refwn3q4zha6.pdf"/>
    <dcterms:issued>2020-09</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48631"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48631/1/Beran_2-14refwn3q4zha6.pdf"/>
    <dc:creator>Liu, Haiyan</dc:creator>
    <dc:creator>Beran, Jan</dc:creator>
    <dcterms:title>On aggregation of strongly dependent time series</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-13T12:25:08Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-13T12:25:08Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Liu, Haiyan</dc:contributor>
    <dc:contributor>Ghosh, Sucharita</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen