Publikation: On aggregation of strongly dependent time series
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We consider cross‐sectional aggregation of time series with long‐range dependence. This question arises for instance from the statistical analysis of networks where aggregation is defined via routing matrices. Asymptotically, aggregation turns out to increase dependence substantially, transforming a hyperbolic decay of autocorrelations to a slowly varying rate. This effect has direct consequences for statistical inference. For instance, unusually slow rates of convergence for nonparametric trend estimators and nonstandard formulas for optimal bandwidths are obtained. The situation changes, when time‐dependent aggregation is applied. Suitably chosen time‐dependent aggregation schemes can preserve a hyperbolic rate or even eliminate autocorrelations completely.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERAN, Jan, Haiyan LIU, Sucharita GHOSH, 2020. On aggregation of strongly dependent time series. In: Scandinavian Journal of Statistics. Wiley. 2020, 47(3), pp. 690-710. ISSN 0303-6898. eISSN 1467-9469. Available under: doi: 10.1111/sjos.12421BibTex
@article{Beran2020-09aggre-48631, year={2020}, doi={10.1111/sjos.12421}, title={On aggregation of strongly dependent time series}, number={3}, volume={47}, issn={0303-6898}, journal={Scandinavian Journal of Statistics}, pages={690--710}, author={Beran, Jan and Liu, Haiyan and Ghosh, Sucharita} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48631"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Beran, Jan</dc:contributor> <dc:creator>Ghosh, Sucharita</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We consider cross‐sectional aggregation of time series with long‐range dependence. This question arises for instance from the statistical analysis of networks where aggregation is defined via routing matrices. Asymptotically, aggregation turns out to increase dependence substantially, transforming a hyperbolic decay of autocorrelations to a slowly varying rate. This effect has direct consequences for statistical inference. For instance, unusually slow rates of convergence for nonparametric trend estimators and nonstandard formulas for optimal bandwidths are obtained. The situation changes, when time‐dependent aggregation is applied. Suitably chosen time‐dependent aggregation schemes can preserve a hyperbolic rate or even eliminate autocorrelations completely.</dcterms:abstract> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48631/1/Beran_2-14refwn3q4zha6.pdf"/> <dcterms:issued>2020-09</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48631"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48631/1/Beran_2-14refwn3q4zha6.pdf"/> <dc:creator>Liu, Haiyan</dc:creator> <dc:creator>Beran, Jan</dc:creator> <dcterms:title>On aggregation of strongly dependent time series</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-13T12:25:08Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-13T12:25:08Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Liu, Haiyan</dc:contributor> <dc:contributor>Ghosh, Sucharita</dc:contributor> </rdf:Description> </rdf:RDF>