Barcoded Nucleotides
Barcoded Nucleotides
Loading...
Files
Date
2012
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Angewandte Chemie International Edition ; 51 (2012), 1. - pp. 254-257. - ISSN 1433-7851. - eISSN 1521-3773
Abstract
DNA as an information storage system is simple and at the same time complex owing to the various different arrangements of the four natural nucleotides.[1] The DNA synthesis by DNA polymerases is intriguing, since these enzymes are able to catalyze the elongation of the primer strand by recognizing the DNA template and selecting the corresponding nucleotide.[1b, 2] This feature can be exploited to diversify the four-base-code by substitution of the natural substrates with modified analogues.[3] Nucleotide analogues equipped with various marker groups (e.g. dyes, tags, or spin labels[4])can be employed in DNA polymerase catalyzed reactions to increase the application scope of DNA (e.g. sequencing,structural characterization, and immobilization[4d, 5]). The “information” embedded in the marker groups allow conclusions to be drawn from the evaluation of the resulting signals. A significant gain in information would result by embedding a marker that exhibits the properties of a barcode. Typically, the barcode label bears no descriptive data but it consists of a series of signs which code for the deposited information (the term was used in other contexts with DNA before).[6] For universal adoption the barcode should be simple, affixed easily, and allow a reliable assignment of the deposited information. Oligodeoxynucleotides (ODNs) meet the requirements of a barcode label to a great extent, since they have a simple code and can be distinguished by
characteristics such as self-assembly and hybridization specificity. For a simple introduction of these DNA barcode labels into DNA, an enzyme-mediated approach utilizing ODN-modified nucleotides would be desirable.[7] However, the acceptance of these modified nucleotides by DNA polymerases should be hampered by the steric demand of the ODN-modified nucleotides. Herein, we show that despite
the steric demand the enzymatic synthesis of barcoded DNA is feasible by using ODN-modified nucleoside triphosphates
that are about 40-times larger than the natural nucleotides and longer than the diameter of a DNA polymerase (Figure 1A).
characteristics such as self-assembly and hybridization specificity. For a simple introduction of these DNA barcode labels into DNA, an enzyme-mediated approach utilizing ODN-modified nucleotides would be desirable.[7] However, the acceptance of these modified nucleotides by DNA polymerases should be hampered by the steric demand of the ODN-modified nucleotides. Herein, we show that despite
the steric demand the enzymatic synthesis of barcoded DNA is feasible by using ODN-modified nucleoside triphosphates
that are about 40-times larger than the natural nucleotides and longer than the diameter of a DNA polymerase (Figure 1A).
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
DNA polymerase,enzymatic synthesis,microarray,nucleotides,oligonucleotides
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
BACCARO, Anna, Anna-Lena STECK, Andreas MARX, 2012. Barcoded Nucleotides. In: Angewandte Chemie International Edition. 51(1), pp. 254-257. ISSN 1433-7851. eISSN 1521-3773. Available under: doi: 10.1002/anie.201105717BibTex
@article{Baccaro2012-01-02Barco-17331, year={2012}, doi={10.1002/anie.201105717}, title={Barcoded Nucleotides}, number={1}, volume={51}, issn={1433-7851}, journal={Angewandte Chemie International Edition}, pages={254--257}, author={Baccaro, Anna and Steck, Anna-Lena and Marx, Andreas}, note={Supporting information under http://dx.doi.org/10.1002/anie.201105717} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/17331"> <dcterms:abstract xml:lang="eng">DNA as an information storage system is simple and at the same time complex owing to the various different arrangements of the four natural nucleotides.[1] The DNA synthesis by DNA polymerases is intriguing, since these enzymes are able to catalyze the elongation of the primer strand by recognizing the DNA template and selecting the corresponding nucleotide.[1b, 2] This feature can be exploited to diversify the four-base-code by substitution of the natural substrates with modified analogues.[3] Nucleotide analogues equipped with various marker groups (e.g. dyes, tags, or spin labels[4])can be employed in DNA polymerase catalyzed reactions to increase the application scope of DNA (e.g. sequencing,structural characterization, and immobilization[4d, 5]). The “information” embedded in the marker groups allow conclusions to be drawn from the evaluation of the resulting signals. A significant gain in information would result by embedding a marker that exhibits the properties of a barcode. Typically, the barcode label bears no descriptive data but it consists of a series of signs which code for the deposited information (the term was used in other contexts with DNA before).[6] For universal adoption the barcode should be simple, affixed easily, and allow a reliable assignment of the deposited information. Oligodeoxynucleotides (ODNs) meet the requirements of a barcode label to a great extent, since they have a simple code and can be distinguished by<br />characteristics such as self-assembly and hybridization specificity. For a simple introduction of these DNA barcode labels into DNA, an enzyme-mediated approach utilizing ODN-modified nucleotides would be desirable.[7] However, the acceptance of these modified nucleotides by DNA polymerases should be hampered by the steric demand of the ODN-modified nucleotides. Herein, we show that despite<br />the steric demand the enzymatic synthesis of barcoded DNA is feasible by using ODN-modified nucleoside triphosphates<br />that are about 40-times larger than the natural nucleotides and longer than the diameter of a DNA polymerase (Figure 1A).</dcterms:abstract> <dc:contributor>Steck, Anna-Lena</dc:contributor> <dc:contributor>Baccaro, Anna</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17331/1/Marx.pdf"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-01T13:42:31Z</dc:date> <dcterms:bibliographicCitation>First publ. in: Angewandte Chemie International Edition ; 51 (2012), 1. - pp. 254-257</dcterms:bibliographicCitation> <dc:creator>Marx, Andreas</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/17331"/> <dcterms:title>Barcoded Nucleotides</dcterms:title> <dc:creator>Baccaro, Anna</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Steck, Anna-Lena</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-01T13:42:31Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2012-01-02</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/17331/1/Marx.pdf"/> <dc:contributor>Marx, Andreas</dc:contributor> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Supporting information under http://dx.doi.org/10.1002/anie.201105717
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes