Publikation: Breaking the Curse of Visual Data Exploration : Improving Analyses by Building Bridges between Data World and Real World
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Visual data exploration is a useful means to extract relevant information from large sets of data. The visual analytics pipeline processes data recorded from the real world to extract knowledge from gathered data. Subsequently, the resulting knowledge is associated with the real world and applied to it. However, the considered data for the analysis is usually only a small fraction of the actual real-world data and lacks above all in context information. It can easily happen that crucial context information is disregarded, leading to false conclusions about the real world. Therefore, conclusions and reasoning based on the analysis of this data pertain to the world represented by the data, and may not be valid for the real world. The purpose of this paper is to raise awareness of this discrepancy between the data world and the real world which has a high impact on the validity of analysis results in the real world. We propose two strategies which help to identify and remove specific differences between the data world and the real world. The usefulness and applicability of our strategies are demonstrated via several use cases.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KRAUS, Matthias, Niklas WEILER, Thorsten BREITKREUTZ, Daniel A. KEIM, Manuel STEIN, 2019. Breaking the Curse of Visual Data Exploration : Improving Analyses by Building Bridges between Data World and Real World. IVAPP 2019 : 10th International Conference on Information Visualization Theory and Applications. Prague, Czech Republic, 25. Feb. 2019 - 27. Feb. 2019. In: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications : Volume 3: IVAPP. Setúbal, Portugal: Scitepress, 2019, pp. 19-27. ISBN 978-989-758-354-4. Available under: doi: 10.5220/0007257400190027BibTex
@inproceedings{Kraus2019Break-45104, year={2019}, doi={10.5220/0007257400190027}, title={Breaking the Curse of Visual Data Exploration : Improving Analyses by Building Bridges between Data World and Real World}, isbn={978-989-758-354-4}, publisher={Scitepress}, address={Setúbal, Portugal}, booktitle={Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications : Volume 3: IVAPP}, pages={19--27}, author={Kraus, Matthias and Weiler, Niklas and Breitkreutz, Thorsten and Keim, Daniel A. and Stein, Manuel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45104"> <dc:contributor>Stein, Manuel</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T14:44:00Z</dcterms:available> <dc:contributor>Breitkreutz, Thorsten</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">Visual data exploration is a useful means to extract relevant information from large sets of data. The visual analytics pipeline processes data recorded from the real world to extract knowledge from gathered data. Subsequently, the resulting knowledge is associated with the real world and applied to it. However, the considered data for the analysis is usually only a small fraction of the actual real-world data and lacks above all in context information. It can easily happen that crucial context information is disregarded, leading to false conclusions about the real world. Therefore, conclusions and reasoning based on the analysis of this data pertain to the world represented by the data, and may not be valid for the real world. The purpose of this paper is to raise awareness of this discrepancy between the data world and the real world which has a high impact on the validity of analysis results in the real world. We propose two strategies which help to identify and remove specific differences between the data world and the real world. The usefulness and applicability of our strategies are demonstrated via several use cases.</dcterms:abstract> <dc:creator>Weiler, Niklas</dc:creator> <dc:creator>Kraus, Matthias</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T14:44:00Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45104/1/Kraus_2-14q867zqr3ss45.pdf"/> <dc:contributor>Weiler, Niklas</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45104/1/Kraus_2-14q867zqr3ss45.pdf"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Stein, Manuel</dc:creator> <dcterms:issued>2019</dcterms:issued> <dc:language>eng</dc:language> <dcterms:title>Breaking the Curse of Visual Data Exploration : Improving Analyses by Building Bridges between Data World and Real World</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45104"/> <dc:contributor>Kraus, Matthias</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Breitkreutz, Thorsten</dc:creator> </rdf:Description> </rdf:RDF>