Publikation:

Breaking the Curse of Visual Data Exploration : Improving Analyses by Building Bridges between Data World and Real World

Lade...
Vorschaubild

Dateien

Kraus_2-14q867zqr3ss45.pdf
Kraus_2-14q867zqr3ss45.pdfGröße: 1.71 MBDownloads: 572

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications : Volume 3: IVAPP. Setúbal, Portugal: Scitepress, 2019, pp. 19-27. ISBN 978-989-758-354-4. Available under: doi: 10.5220/0007257400190027

Zusammenfassung

Visual data exploration is a useful means to extract relevant information from large sets of data. The visual analytics pipeline processes data recorded from the real world to extract knowledge from gathered data. Subsequently, the resulting knowledge is associated with the real world and applied to it. However, the considered data for the analysis is usually only a small fraction of the actual real-world data and lacks above all in context information. It can easily happen that crucial context information is disregarded, leading to false conclusions about the real world. Therefore, conclusions and reasoning based on the analysis of this data pertain to the world represented by the data, and may not be valid for the real world. The purpose of this paper is to raise awareness of this discrepancy between the data world and the real world which has a high impact on the validity of analysis results in the real world. We propose two strategies which help to identify and remove specific differences between the data world and the real world. The usefulness and applicability of our strategies are demonstrated via several use cases.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Visualization Theory, Uncertainty, Validation, Visual Analytics

Konferenz

IVAPP 2019 : 10th International Conference on Information Visualization Theory and Applications, 25. Feb. 2019 - 27. Feb. 2019, Prague, Czech Republic
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KRAUS, Matthias, Niklas WEILER, Thorsten BREITKREUTZ, Daniel A. KEIM, Manuel STEIN, 2019. Breaking the Curse of Visual Data Exploration : Improving Analyses by Building Bridges between Data World and Real World. IVAPP 2019 : 10th International Conference on Information Visualization Theory and Applications. Prague, Czech Republic, 25. Feb. 2019 - 27. Feb. 2019. In: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications : Volume 3: IVAPP. Setúbal, Portugal: Scitepress, 2019, pp. 19-27. ISBN 978-989-758-354-4. Available under: doi: 10.5220/0007257400190027
BibTex
@inproceedings{Kraus2019Break-45104,
  year={2019},
  doi={10.5220/0007257400190027},
  title={Breaking the Curse of Visual Data Exploration : Improving Analyses by Building Bridges between Data World and Real World},
  isbn={978-989-758-354-4},
  publisher={Scitepress},
  address={Setúbal, Portugal},
  booktitle={Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications : Volume 3: IVAPP},
  pages={19--27},
  author={Kraus, Matthias and Weiler, Niklas and Breitkreutz, Thorsten and Keim, Daniel A. and Stein, Manuel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45104">
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T14:44:00Z</dcterms:available>
    <dc:contributor>Breitkreutz, Thorsten</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">Visual data exploration is a useful means to extract relevant information from large sets of data. The visual analytics pipeline processes data recorded from the real world to extract knowledge from gathered data. Subsequently, the resulting knowledge is associated with the real world and applied to it. However, the considered data for the analysis is usually only a small fraction of the actual real-world data and lacks above all in context information. It can easily happen that crucial context information is disregarded, leading to false conclusions about the real world. Therefore, conclusions and reasoning based on the analysis of this data pertain to the world represented by the data, and may not be valid for the real world. The purpose of this paper is to raise awareness of this discrepancy between the data world and the real world which has a high impact on the validity of analysis results in the real world. We propose two strategies which help to identify and remove specific differences between the data world and the real world. The usefulness and applicability of our strategies are demonstrated via several use cases.</dcterms:abstract>
    <dc:creator>Weiler, Niklas</dc:creator>
    <dc:creator>Kraus, Matthias</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-19T14:44:00Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45104/1/Kraus_2-14q867zqr3ss45.pdf"/>
    <dc:contributor>Weiler, Niklas</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/45104/1/Kraus_2-14q867zqr3ss45.pdf"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:creator>Stein, Manuel</dc:creator>
    <dcterms:issued>2019</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:title>Breaking the Curse of Visual Data Exploration : Improving Analyses by Building Bridges between Data World and Real World</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45104"/>
    <dc:contributor>Kraus, Matthias</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Breitkreutz, Thorsten</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen