Publikation:

Delay differential equations based models in NONMEM

Lade...
Vorschaubild

Dateien

Yan_2-14m1fvwpltwrp7.pdf
Yan_2-14m1fvwpltwrp7.pdfGröße: 5.24 MBDownloads: 618

Datum

2021

Autor:innen

Yan, Xiaoyu
Bauer, Robert
Pérez-Ruixo, Juan Jose
Krzyzanski, Wojciech

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Pharmacokinetics and Pharmacodynamics. Springer. 2021, 48(6), pp. 763-802. ISSN 1567-567X. eISSN 1573-8744. Available under: doi: 10.1007/s10928-021-09770-z

Zusammenfassung

Delay differential equations (DDEs) are commonly used in pharmacometric models to describe delays present in pharmacokinetic and pharmacodynamic data analysis. Several DDE solvers have been implemented in NONMEM 7.5 for the first time. Two of them are based on algorithms already applied elsewhere, while others are extensions of existing ordinary differential equations (ODEs) solvers. The purpose of this tutorial is to introduce basic concepts underlying DDE based models and to show how they can be developed using NONMEM. The examples include previously published DDE models such as logistic growth, tumor growth inhibition, indirect response with precursor pool, rheumatoid arthritis, and erythropoiesis-stimulating agents. We evaluated the accuracy of NONMEM DDE solvers, their ability to handle stiff problems, and their performance in parameter estimation using both first-order conditional estimation (FOCE) and the expectation–maximization (EM) method. NONMEM control streams and excerpts from datasets are provided for all discussed examples. All DDE solvers provide accurate and precise solutions with the number of significant digits controlled by the error tolerance parameters. For estimation of population parameters, the EM method is more stable than FOCE regardless of the DDE solver.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690YAN, Xiaoyu, Robert BAUER, Gilbert KOCH, Johannes SCHROPP, Juan Jose PÉREZ-RUIXO, Wojciech KRZYZANSKI, 2021. Delay differential equations based models in NONMEM. In: Journal of Pharmacokinetics and Pharmacodynamics. Springer. 2021, 48(6), pp. 763-802. ISSN 1567-567X. eISSN 1573-8744. Available under: doi: 10.1007/s10928-021-09770-z
BibTex
@article{Yan2021-12Delay-54527,
  year={2021},
  doi={10.1007/s10928-021-09770-z},
  title={Delay differential equations based models in NONMEM},
  number={6},
  volume={48},
  issn={1567-567X},
  journal={Journal of Pharmacokinetics and Pharmacodynamics},
  pages={763--802},
  author={Yan, Xiaoyu and Bauer, Robert and Koch, Gilbert and Schropp, Johannes and Pérez-Ruixo, Juan Jose and Krzyzanski, Wojciech}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54527">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Yan, Xiaoyu</dc:creator>
    <dc:creator>Pérez-Ruixo, Juan Jose</dc:creator>
    <dc:contributor>Pérez-Ruixo, Juan Jose</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-10T09:33:47Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54527/1/Yan_2-14m1fvwpltwrp7.pdf"/>
    <dc:creator>Bauer, Robert</dc:creator>
    <dc:contributor>Bauer, Robert</dc:contributor>
    <dcterms:abstract xml:lang="eng">Delay differential equations (DDEs) are commonly used in pharmacometric models to describe delays present in pharmacokinetic and pharmacodynamic data analysis. Several DDE solvers have been implemented in NONMEM 7.5 for the first time. Two of them are based on algorithms already applied elsewhere, while others are extensions of existing ordinary differential equations (ODEs) solvers. The purpose of this tutorial is to introduce basic concepts underlying DDE based models and to show how they can be developed using NONMEM. The examples include previously published DDE models such as logistic growth, tumor growth inhibition, indirect response with precursor pool, rheumatoid arthritis, and erythropoiesis-stimulating agents. We evaluated the accuracy of NONMEM DDE solvers, their ability to handle stiff problems, and their performance in parameter estimation using both first-order conditional estimation (FOCE) and the expectation–maximization (EM) method. NONMEM control streams and excerpts from datasets are provided for all discussed examples. All DDE solvers provide accurate and precise solutions with the number of significant digits controlled by the error tolerance parameters. For estimation of population parameters, the EM method is more stable than FOCE regardless of the DDE solver.</dcterms:abstract>
    <dcterms:title>Delay differential equations based models in NONMEM</dcterms:title>
    <dc:creator>Koch, Gilbert</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/54527/1/Yan_2-14m1fvwpltwrp7.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-10T09:33:47Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2021-12</dcterms:issued>
    <dc:contributor>Schropp, Johannes</dc:contributor>
    <dc:creator>Schropp, Johannes</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54527"/>
    <dc:contributor>Yan, Xiaoyu</dc:contributor>
    <dc:creator>Krzyzanski, Wojciech</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Koch, Gilbert</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Krzyzanski, Wojciech</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen