Publikation: MotionRugs : Visualizing Collective Trends in Space and Time
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Understanding the movement patterns of collectives, such as flocks of birds or fish swarms, is an interesting open research question. The collectives are driven by mutual objectives or react to individual direction changes and external influence factors and stimuli. The challenge in visualizing collective movement data is to show space and time of hundreds of movements at the same time to enable the detection of spatiotemporal patterns. In this paper, we propose MotionRugs, a novel space efficient technique for visualizing moving groups of entities. Building upon established space-partitioning strategies, our approach reduces the spatial dimensions in each time step to a one-dimensional ordered representation of the individual entities. By design, MotionRugs provides an overlap-free, compact overview of the development of group movements over time and thus, enables analysts to visually identify and explore group-specific temporal patterns. We demonstrate the usefulness of our approach in the field of fish swarm analysis and report on initial feedback of domain experts from the field of collective behavior.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BUCHMÜLLER, Juri F., Dominik JÄCKLE, Eren CAKMAK, Ulrik BRANDES, Daniel A. KEIM, 2019. MotionRugs : Visualizing Collective Trends in Space and Time. In: IEEE Transactions on Visualization and Computer Graphics. 2019, 25(1), pp. 76-86. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2018.2865049BibTex
@article{Buchmuller2019-01Motio-43154, year={2019}, doi={10.1109/TVCG.2018.2865049}, title={MotionRugs : Visualizing Collective Trends in Space and Time}, number={1}, volume={25}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={76--86}, author={Buchmüller, Juri F. and Jäckle, Dominik and Cakmak, Eren and Brandes, Ulrik and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43154"> <dc:creator>Keim, Daniel A.</dc:creator> <dc:language>eng</dc:language> <dc:creator>Buchmüller, Juri F.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Understanding the movement patterns of collectives, such as flocks of birds or fish swarms, is an interesting open research question. The collectives are driven by mutual objectives or react to individual direction changes and external influence factors and stimuli. The challenge in visualizing collective movement data is to show space and time of hundreds of movements at the same time to enable the detection of spatiotemporal patterns. In this paper, we propose MotionRugs, a novel space efficient technique for visualizing moving groups of entities. Building upon established space-partitioning strategies, our approach reduces the spatial dimensions in each time step to a one-dimensional ordered representation of the individual entities. By design, MotionRugs provides an overlap-free, compact overview of the development of group movements over time and thus, enables analysts to visually identify and explore group-specific temporal patterns. We demonstrate the usefulness of our approach in the field of fish swarm analysis and report on initial feedback of domain experts from the field of collective behavior.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-29T14:56:03Z</dc:date> <dc:contributor>Buchmüller, Juri F.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43154"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Jäckle, Dominik</dc:contributor> <dc:contributor>Brandes, Ulrik</dc:contributor> <dc:creator>Brandes, Ulrik</dc:creator> <dcterms:title>MotionRugs : Visualizing Collective Trends in Space and Time</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Cakmak, Eren</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43154/1/Buchmueller_2-14jwfwf2b79nz2.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43154/1/Buchmueller_2-14jwfwf2b79nz2.pdf"/> <dc:creator>Jäckle, Dominik</dc:creator> <dcterms:issued>2019-01</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Cakmak, Eren</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-29T14:56:03Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>