Publikation:

Zooplankton biomass dynamics in oligotrophic versus eutrophic conditions : a test of the PEG model

Lade...
Vorschaubild

Dateien

Straile_0-260461.pdf
Straile_0-260461.pdfGröße: 1.33 MBDownloads: 1027

Datum

2015

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Freshwater Biology. 2015, 60(1), pp. 174-183. ISSN 0046-5070. eISSN 1365-2427. Available under: doi: 10.1111/fwb.12484

Zusammenfassung

  1. The model of the International Society of Limnology (SIL) Plankton Ecology working group (hereafter the PEG model) is a verbal model describing the patterns and driving factors of seasonal phytoplankton and zooplankton succession in oligotrophic and eutrophic lakes (Sommer et al., 1986). Despite being a citation classic, tests of the PEG model with respect to differences in zooplankton biomass dynamics between oligotrophic and eutrophic lakes are lacking.
    2. Here, I use the long-term data from Lake Constance, which during the last 100 year changed from an (ultra-) oligotrophic lake to a eutrophic lake and back to an oligotrophic lake to analyse trophic status differences in zooplankton biomass seasonality. Using data from one lake allows one to study trophic influences on biomass dynamics without the confounding effects of lake geographical setting and lake morphology, which complicate comparative dynamics in eutrophic versus oligotrophic lakes. However, environmental changes due to other driving factors, for example climate change,
    may possibly alter biomass dynamics as well.
    3. Data from Lake Constance do not support the differences in zooplankton seasonality in respect to peak timing between eutrophic and oligotrophic lakes suggested by the PEG model. Rather total zooplankton biomass, as well as cladoceran and copepod biomass showed a peak in May/June during all trophic conditions. Biomass dynamics of cladocerans during spring were more strongly influenced by water temperature than by trophic state. Furthermore, analyses of the geographical setting of the lakes considered in Sommer et al. (1986) suggest that the proposed differences in
    zooplankton seasonality between eutrophic and oligotrophic lakes are at least partially due to the confounding effect of lake altitudinal setting; the oligotrophic lakes were located at higher altitude than the eutrophic lakes.
    4. As a consequence of the results from Lake Constance, and the bias detected in the Sommer et al. (1986) study, a modified PEG model is proposed which considers low water temperature and not food limitation as the most important factor reducing zooplankton growth rate during early spring in both oligotrophic and eutrophic lakes.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

cladocerans, copepods, plankton succession, temperature, trophic state.

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690STRAILE, Dietmar, 2015. Zooplankton biomass dynamics in oligotrophic versus eutrophic conditions : a test of the PEG model. In: Freshwater Biology. 2015, 60(1), pp. 174-183. ISSN 0046-5070. eISSN 1365-2427. Available under: doi: 10.1111/fwb.12484
BibTex
@article{Straile2015Zoopl-29660,
  year={2015},
  doi={10.1111/fwb.12484},
  title={Zooplankton biomass dynamics in oligotrophic versus eutrophic conditions : a test of the PEG model},
  number={1},
  volume={60},
  issn={0046-5070},
  journal={Freshwater Biology},
  pages={174--183},
  author={Straile, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29660">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29660/3/Straile_0-260461.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-01-30T08:32:07Z</dc:date>
    <dc:contributor>Straile, Dietmar</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">1. The model of the International Society of Limnology (SIL) Plankton Ecology working group (hereafter the PEG model) is a verbal model describing the patterns and driving factors of seasonal phytoplankton and zooplankton succession in oligotrophic and eutrophic lakes (Sommer et al., 1986). Despite being a citation classic, tests of the PEG model with respect to differences in zooplankton biomass dynamics between oligotrophic and eutrophic lakes are lacking.&lt;br /&gt;2. Here, I use the long-term data from Lake Constance, which during the last 100 year changed from an (ultra-) oligotrophic lake to a eutrophic lake and back to an oligotrophic lake to analyse trophic status differences in zooplankton biomass seasonality. Using data from one lake allows one to study trophic influences on biomass dynamics without the confounding effects of lake geographical setting and lake morphology, which complicate comparative dynamics in eutrophic versus oligotrophic lakes. However, environmental changes due to other driving factors, for example climate change,&lt;br /&gt;may possibly alter biomass dynamics as well.&lt;br /&gt;3. Data from Lake Constance do not support the differences in zooplankton seasonality in respect to peak timing between eutrophic and oligotrophic lakes suggested by the PEG model. Rather total zooplankton biomass, as well as cladoceran and copepod biomass showed a peak in May/June during all trophic conditions. Biomass dynamics of cladocerans during spring were more strongly influenced by water temperature than by trophic state. Furthermore, analyses of the geographical setting of the lakes considered in Sommer et al. (1986) suggest that the proposed differences in&lt;br /&gt;zooplankton seasonality between eutrophic and oligotrophic lakes are at least partially due to the confounding effect of lake altitudinal setting; the oligotrophic lakes were located at higher altitude than the eutrophic lakes.&lt;br /&gt;4. As a consequence of the results from Lake Constance, and the bias detected in the Sommer et al. (1986) study, a modified PEG model is proposed which considers low water temperature and not food limitation as the most important factor reducing zooplankton growth rate during early spring in both oligotrophic and eutrophic lakes.</dcterms:abstract>
    <dcterms:title>Zooplankton biomass dynamics in oligotrophic versus eutrophic conditions : a test of the PEG model</dcterms:title>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Straile, Dietmar</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-01-30T08:32:07Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29660"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29660/3/Straile_0-260461.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen