Publikation: Clustering Techniques for Large Data Sets : From the Past to the Future
Lade...
Dateien
Datum
1999
Autor:innen
Hinneburg, Alexander
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Tutorial notes of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '99. New York, New York, USA: ACM Press, 1999, pp. 141-181. ISBN 1-58113-171-2. Available under: doi: 10.1145/312179.312189
Zusammenfassung
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Tutorial notes of the fifth ACM SIGKDD international conference, 15. Aug. 1999 - 18. Aug. 1999, San Diego, California, United States
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
HINNEBURG, Alexander, Daniel A. KEIM, 1999. Clustering Techniques for Large Data Sets : From the Past to the Future. Tutorial notes of the fifth ACM SIGKDD international conference. San Diego, California, United States, 15. Aug. 1999 - 18. Aug. 1999. In: Tutorial notes of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '99. New York, New York, USA: ACM Press, 1999, pp. 141-181. ISBN 1-58113-171-2. Available under: doi: 10.1145/312179.312189BibTex
@inproceedings{Hinneburg1999Clust-5916, year={1999}, doi={10.1145/312179.312189}, title={Clustering Techniques for Large Data Sets : From the Past to the Future}, isbn={1-58113-171-2}, publisher={ACM Press}, address={New York, New York, USA}, booktitle={Tutorial notes of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '99}, pages={141--181}, author={Hinneburg, Alexander and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5916"> <dcterms:bibliographicCitation>First publ. in: ACM SIGKDD 1999 Int. Conf. on Knowledge Discovery and Data Mining (KDD'99), San Diego, CA, September, 1999, pp. 141-181</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5916"/> <dc:creator>Hinneburg, Alexander</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:21Z</dcterms:available> <dc:contributor>Hinneburg, Alexander</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:21Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5916/1/ClustTutKDD99Final_9_8.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Clustering Techniques for Large Data Sets : From the Past to the Future</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5916/1/ClustTutKDD99Final_9_8.pdf"/> <dc:language>eng</dc:language> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:issued>1999</dcterms:issued> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:format>application/pdf</dc:format> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein