Stochastic form of the Landau-Lifshitz-Bloch equation

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Autor:innen
Evans, Richard F. L.
Chantrell, Roy W.
Chubykalo-Fesenko, Oksana
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Physical Review B. 2012, 85(1). ISSN 1098-0121. Available under: doi: 10.1103/PhysRevB.85.014433
Zusammenfassung

The Landau-Lifshitz-Bloch equation is a formulation of dynamic micromagnetics valid at all temperatures, treating both the transverse and longitudinal relaxation components important for high-temperature applications. In this paper we discuss two stochastic forms of the Landau-Lifshitz-Bloch equation. Both of them are consistent with the fluctuation-dissipation theorem. We derive the corresponding Fokker-Planck equations and show that only the stochastic form of the Landau-Lifshitz-Bloch equation proposed in the present paper is consistent with the Boltzmann distribution at high temperatures. The previously used form does not satisfy this requirement in the vicinity of the Curie temperature. We discuss the stochastic properties of both equations and present numerical simulations for distribution functions and the average magnetization value as a function of temperature.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690EVANS, Richard F. L., Denise HINZKE, Unai ATXITIA, Ulrich NOWAK, Roy W. CHANTRELL, Oksana CHUBYKALO-FESENKO, 2012. Stochastic form of the Landau-Lifshitz-Bloch equation. In: Physical Review B. 2012, 85(1). ISSN 1098-0121. Available under: doi: 10.1103/PhysRevB.85.014433
BibTex
@article{Evans2012Stoch-18541,
  year={2012},
  doi={10.1103/PhysRevB.85.014433},
  title={Stochastic form of the Landau-Lifshitz-Bloch equation},
  number={1},
  volume={85},
  issn={1098-0121},
  journal={Physical Review B},
  author={Evans, Richard F. L. and Hinzke, Denise and Atxitia, Unai and Nowak, Ulrich and Chantrell, Roy W. and Chubykalo-Fesenko, Oksana}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18541">
    <dc:creator>Evans, Richard F. L.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-20T15:20:28Z</dcterms:available>
    <dcterms:issued>2012</dcterms:issued>
    <dc:creator>Chubykalo-Fesenko, Oksana</dc:creator>
    <dc:creator>Nowak, Ulrich</dc:creator>
    <dc:contributor>Atxitia, Unai</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18541"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Chantrell, Roy W.</dc:contributor>
    <dc:creator>Chantrell, Roy W.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18541/2/Evans_185415.pdf"/>
    <dc:contributor>Evans, Richard F. L.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Stochastic form of the Landau-Lifshitz-Bloch equation</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-02-20T15:20:28Z</dc:date>
    <dc:contributor>Hinzke, Denise</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>Physical review B ; 85 (2012), 1. - 014433</dcterms:bibliographicCitation>
    <dc:creator>Atxitia, Unai</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18541/2/Evans_185415.pdf"/>
    <dc:contributor>Nowak, Ulrich</dc:contributor>
    <dc:contributor>Chubykalo-Fesenko, Oksana</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Hinzke, Denise</dc:creator>
    <dcterms:abstract xml:lang="eng">The Landau-Lifshitz-Bloch equation is a formulation of dynamic micromagnetics valid at all temperatures, treating both the transverse and longitudinal relaxation components important for high-temperature applications. In this paper we discuss two stochastic forms of the Landau-Lifshitz-Bloch equation. Both of them are consistent with the fluctuation-dissipation theorem. We derive the corresponding Fokker-Planck equations and show that only the stochastic form of the Landau-Lifshitz-Bloch equation proposed in the present paper is consistent with the Boltzmann distribution at high temperatures. The previously used form does not satisfy this requirement in the vicinity of the Curie temperature. We discuss the stochastic properties of both equations and present numerical simulations for distribution functions and the average magnetization value as a function of temperature.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen