Publikation:

VIS4ML : An Ontology for Visual Analytics Assisted Machine Learning

Lade...
Vorschaubild

Dateien

Sacha_2-14c9g73ui6siw1.pdf
Sacha_2-14c9g73ui6siw1.pdfGröße: 6.75 MBDownloads: 531

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. 2019, 25(1), pp. 385-395. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2018.2864838

Zusammenfassung

While many VA workflows make use of machine-learned models to support analytical tasks, VA workflows have become increasingly important in understanding and improving Machine Learning (ML) processes. In this paper, we propose an ontology (VIS4ML) for a subarea of VA, namely "VA-assisted ML". The purpose of VIS4ML is to describe and understand existing VA workflows used in ML as well as to detect gaps in ML processes and the potential of introducing advanced VA techniques to such processes. Ontologies have been widely used to map out the scope of a topic in biology, medicine, and many other disciplines. We adopt the scholarly methodologies for constructing VIS4ML, including the specification, conceptualization, formalization, implementation, and validation of ontologies. In particular, we reinterpret the traditional VA pipeline to encompass model-development workflows. We introduce necessary definitions, rules, syntaxes, and visual notations for formulating VIS4ML and make use of semantic web technologies for implementing it in the Web Ontology Language (OWL). VIS4ML captures the high-level knowledge about previous workflows where VA is used to assist in ML. It is consistent with the established VA concepts and will continue to evolve along with the future developments in VA and ML. While this ontology is an effort for building the theoretical foundation of VA, it can be used by practitioners in real-world applications to optimize model-development workflows by systematically examining the potential benefits that can be brought about by either machine or human capabilities. Meanwhile, VIS4ML is intended to be extensible and will continue to be updated to reflect future advancements in using VA for building high-quality data-analytical models or for building such models rapidly.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Visual Analytics, Visualization, Machine Learning, Human-Computer Interaction, Ontology, VIS4ML

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SACHA, Dominik, Matthias KRAUS, Daniel A. KEIM, Min CHEN, 2019. VIS4ML : An Ontology for Visual Analytics Assisted Machine Learning. In: IEEE Transactions on Visualization and Computer Graphics. 2019, 25(1), pp. 385-395. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2018.2864838
BibTex
@article{Sacha2019-01VIS4M-43153,
  year={2019},
  doi={10.1109/TVCG.2018.2864838},
  title={VIS4ML : An Ontology for Visual Analytics Assisted Machine Learning},
  number={1},
  volume={25},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={385--395},
  author={Sacha, Dominik and Kraus, Matthias and Keim, Daniel A. and Chen, Min}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43153">
    <dc:contributor>Kraus, Matthias</dc:contributor>
    <dc:contributor>Sacha, Dominik</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Chen, Min</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43153"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">While many VA workflows make use of machine-learned models to support analytical tasks, VA workflows have become increasingly important in understanding and improving Machine Learning (ML) processes. In this paper, we propose an ontology (VIS4ML) for a subarea of VA, namely "VA-assisted ML". The purpose of VIS4ML is to describe and understand existing VA workflows used in ML as well as to detect gaps in ML processes and the potential of introducing advanced VA techniques to such processes. Ontologies have been widely used to map out the scope of a topic in biology, medicine, and many other disciplines. We adopt the scholarly methodologies for constructing VIS4ML, including the specification, conceptualization, formalization, implementation, and validation of ontologies. In particular, we reinterpret the traditional VA pipeline to encompass model-development workflows. We introduce necessary definitions, rules, syntaxes, and visual notations for formulating VIS4ML and make use of semantic web technologies for implementing it in the Web Ontology Language (OWL). VIS4ML captures the high-level knowledge about previous workflows where VA is used to assist in ML. It is consistent with the established VA concepts and will continue to evolve along with the future developments in VA and ML. While this ontology is an effort for building the theoretical foundation of VA, it can be used by practitioners in real-world applications to optimize model-development workflows by systematically examining the potential benefits that can be brought about by either machine or human capabilities. Meanwhile, VIS4ML is intended to be extensible and will continue to be updated to reflect future advancements in using VA for building high-quality data-analytical models or for building such models rapidly.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Chen, Min</dc:contributor>
    <dcterms:title>VIS4ML : An Ontology for Visual Analytics Assisted Machine Learning</dcterms:title>
    <dcterms:issued>2019-01</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43153/1/Sacha_2-14c9g73ui6siw1.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-29T14:52:23Z</dcterms:available>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Kraus, Matthias</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43153/1/Sacha_2-14c9g73ui6siw1.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-29T14:52:23Z</dc:date>
    <dc:creator>Sacha, Dominik</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen