Publikation: Literature Fingerprinting : A New Method for Visual Literary Analysis
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In computer-based literary analysis different types of features are used to characterize a text. Usually, only a single feature value or vector is calculated for the whole text. In this paper, we combine automatic literature analysis methods with an effective visualization technique to analyze the behavior of the feature values across the text. For an interactive visual analysis, we calculate a sequence of feature values per text and present them to the user as a characteristic fingerprint. The feature values may be calculated on different hierarchy levels, allowing the analysis to be done on different resolution levels. A case study shows several successful applications of our new method to known literature problems and demonstrates the advantage of our new visual literature fingerprinting.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KEIM, Daniel A., Daniela OELKE, 2007. Literature Fingerprinting : A New Method for Visual Literary Analysis. 2007 IEEE Symposium on Visual Analytics Science and Technology. Sacramento, CA, USA, 30. Okt. 2007 - 1. Nov. 2007. In: 2007 IEEE Symposium on Visual Analytics Science and Technology. IEEE, 2007, pp. 115-122. ISBN 978-1-4244-1659-2. Available under: doi: 10.1109/VAST.2007.4389004BibTex
@inproceedings{Keim2007-10Liter-5492, year={2007}, doi={10.1109/VAST.2007.4389004}, title={Literature Fingerprinting : A New Method for Visual Literary Analysis}, isbn={978-1-4244-1659-2}, publisher={IEEE}, booktitle={2007 IEEE Symposium on Visual Analytics Science and Technology}, pages={115--122}, author={Keim, Daniel A. and Oelke, Daniela} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5492"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Oelke, Daniela</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5492/1/Literature_Fingerprinting.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5492"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5492/1/Literature_Fingerprinting.pdf"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:bibliographicCitation>First publ. in: IEEE Symposium on Visual Analytics Science and Technology (VAST 2007),Sacramento, CA, USA, October 30 - November 1, 2007, pp. 115-122</dcterms:bibliographicCitation> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:50Z</dcterms:available> <dcterms:title>Literature Fingerprinting : A New Method for Visual Literary Analysis</dcterms:title> <dc:format>application/pdf</dc:format> <dc:creator>Oelke, Daniela</dc:creator> <dcterms:abstract xml:lang="eng">In computer-based literary analysis different types of features are used to characterize a text. Usually, only a single feature value or vector is calculated for the whole text. In this paper, we combine automatic literature analysis methods with an effective visualization technique to analyze the behavior of the feature values across the text. For an interactive visual analysis, we calculate a sequence of feature values per text and present them to the user as a characteristic fingerprint. The feature values may be calculated on different hierarchy levels, allowing the analysis to be done on different resolution levels. A case study shows several successful applications of our new method to known literature problems and demonstrates the advantage of our new visual literature fingerprinting.</dcterms:abstract> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:issued>2007-10</dcterms:issued> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:50Z</dc:date> </rdf:Description> </rdf:RDF>