Publikation:

Evolving Diverse Collective Behaviors Independent of Swarm Density

Lade...
Vorschaubild

Dateien

Zahadat_2-13xbihf265nuv3.pdf
Zahadat_2-13xbihf265nuv3.pdfGröße: 239.34 KBDownloads: 10

Datum

2015

Autor:innen

Zahadat, Payam
Schmickl, Thomas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

SILVA, Sara, ed. and others. GECCO Companion '15 : Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation. New York, NY: ACM, 2015, pp. 1245-1246. ISBN 978-1-4503-3488-4. Available under: doi: 10.1145/2739482.2768492

Zusammenfassung

There are multiple different ways of implementing artificial evolution of collective behaviors. Besides a classical offline evolution approach, there is, for example, the option of environment-driven distributed evolutionary adaptation in the form of an artificial ecology [2] and more generally there is the approach of embodied evolution [1,3,6]. Another recently reported approach is the application of novelty search to swarm robotics [5]. In the following, we report an extension of the approach of [7]. The underlying concept is an information-theoretic analogon to thermodynamic (Helmholtz) free energy [8]. The assumption is that the brain is permanently trying to predict future perceptions and that minimizing the prediction error is basically inherent to brains. This is defined by the 'free-energy principle' of [4]. The struggle for prediction success requires a complementary force that represents curiosity and exploration. In this abstract we present an extended method called diverse-prediction that rewards not only for correct predictions but also for each visited sensory state. This proves to be a better approach compared to the method prediction that was reported before[7].

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

GECCO '15 : Annual Conference on Genetic and Evolutionary Computation, 11. Juli 2015 - 15. Juli 2015, Madrid, Spain
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ZAHADAT, Payam, Heiko HAMANN, Thomas SCHMICKL, 2015. Evolving Diverse Collective Behaviors Independent of Swarm Density. GECCO '15 : Annual Conference on Genetic and Evolutionary Computation. Madrid, Spain, 11. Juli 2015 - 15. Juli 2015. In: SILVA, Sara, ed. and others. GECCO Companion '15 : Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation. New York, NY: ACM, 2015, pp. 1245-1246. ISBN 978-1-4503-3488-4. Available under: doi: 10.1145/2739482.2768492
BibTex
@inproceedings{Zahadat2015Evolv-59889,
  year={2015},
  doi={10.1145/2739482.2768492},
  title={Evolving Diverse Collective Behaviors Independent of Swarm Density},
  isbn={978-1-4503-3488-4},
  publisher={ACM},
  address={New York, NY},
  booktitle={GECCO Companion '15 : Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation},
  pages={1245--1246},
  editor={Silva, Sara},
  author={Zahadat, Payam and Hamann, Heiko and Schmickl, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59889">
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2015</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59889"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-23T11:43:23Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Schmickl, Thomas</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Zahadat, Payam</dc:creator>
    <dcterms:title>Evolving Diverse Collective Behaviors Independent of Swarm Density</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59889/1/Zahadat_2-13xbihf265nuv3.pdf"/>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dc:creator>Schmickl, Thomas</dc:creator>
    <dcterms:abstract xml:lang="eng">There are multiple different ways of implementing artificial evolution of collective behaviors. Besides a classical offline evolution approach, there is, for example, the option of environment-driven distributed evolutionary adaptation in the form of an artificial ecology [2] and more generally there is the approach of embodied evolution [1,3,6]. Another recently reported approach is the application of novelty search to swarm robotics [5]. In the following, we report an extension of the approach of [7]. The underlying concept is an information-theoretic analogon to thermodynamic (Helmholtz) free energy [8]. The assumption is that the brain is permanently trying to predict future perceptions and that minimizing the prediction error is basically inherent to brains. This is defined by the 'free-energy principle' of [4]. The struggle for prediction success requires a complementary force that represents curiosity and exploration. In this abstract we present an extended method called diverse-prediction that rewards not only for correct predictions but also for each visited sensory state. This proves to be a better approach compared to the method prediction that was reported before[7].</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59889/1/Zahadat_2-13xbihf265nuv3.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Zahadat, Payam</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-23T11:43:23Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen