Publikation: Evolving Diverse Collective Behaviors Independent of Swarm Density
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
There are multiple different ways of implementing artificial evolution of collective behaviors. Besides a classical offline evolution approach, there is, for example, the option of environment-driven distributed evolutionary adaptation in the form of an artificial ecology [2] and more generally there is the approach of embodied evolution [1,3,6]. Another recently reported approach is the application of novelty search to swarm robotics [5]. In the following, we report an extension of the approach of [7]. The underlying concept is an information-theoretic analogon to thermodynamic (Helmholtz) free energy [8]. The assumption is that the brain is permanently trying to predict future perceptions and that minimizing the prediction error is basically inherent to brains. This is defined by the 'free-energy principle' of [4]. The struggle for prediction success requires a complementary force that represents curiosity and exploration. In this abstract we present an extended method called diverse-prediction that rewards not only for correct predictions but also for each visited sensory state. This proves to be a better approach compared to the method prediction that was reported before[7].
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ZAHADAT, Payam, Heiko HAMANN, Thomas SCHMICKL, 2015. Evolving Diverse Collective Behaviors Independent of Swarm Density. GECCO '15 : Annual Conference on Genetic and Evolutionary Computation. Madrid, Spain, 11. Juli 2015 - 15. Juli 2015. In: SILVA, Sara, ed. and others. GECCO Companion '15 : Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation. New York, NY: ACM, 2015, pp. 1245-1246. ISBN 978-1-4503-3488-4. Available under: doi: 10.1145/2739482.2768492BibTex
@inproceedings{Zahadat2015Evolv-59889, year={2015}, doi={10.1145/2739482.2768492}, title={Evolving Diverse Collective Behaviors Independent of Swarm Density}, isbn={978-1-4503-3488-4}, publisher={ACM}, address={New York, NY}, booktitle={GECCO Companion '15 : Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation}, pages={1245--1246}, editor={Silva, Sara}, author={Zahadat, Payam and Hamann, Heiko and Schmickl, Thomas} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59889"> <dc:contributor>Hamann, Heiko</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2015</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59889"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-23T11:43:23Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Schmickl, Thomas</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Zahadat, Payam</dc:creator> <dcterms:title>Evolving Diverse Collective Behaviors Independent of Swarm Density</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59889/1/Zahadat_2-13xbihf265nuv3.pdf"/> <dc:creator>Hamann, Heiko</dc:creator> <dc:creator>Schmickl, Thomas</dc:creator> <dcterms:abstract xml:lang="eng">There are multiple different ways of implementing artificial evolution of collective behaviors. Besides a classical offline evolution approach, there is, for example, the option of environment-driven distributed evolutionary adaptation in the form of an artificial ecology [2] and more generally there is the approach of embodied evolution [1,3,6]. Another recently reported approach is the application of novelty search to swarm robotics [5]. In the following, we report an extension of the approach of [7]. The underlying concept is an information-theoretic analogon to thermodynamic (Helmholtz) free energy [8]. The assumption is that the brain is permanently trying to predict future perceptions and that minimizing the prediction error is basically inherent to brains. This is defined by the 'free-energy principle' of [4]. The struggle for prediction success requires a complementary force that represents curiosity and exploration. In this abstract we present an extended method called diverse-prediction that rewards not only for correct predictions but also for each visited sensory state. This proves to be a better approach compared to the method prediction that was reported before[7].</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59889/1/Zahadat_2-13xbihf265nuv3.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Zahadat, Payam</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-23T11:43:23Z</dcterms:available> </rdf:Description> </rdf:RDF>