Publikation: Comment on Frustrated magnetization in Co nanowires: Competition between crystal anisotropy and demagnetization energy
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Bergmann et al. [Phys. Rev. B 77, 054415 (2008)] present an analytical theory explaining the behavior of ferromagnetic cobalt nanowires with perpendicular anisotropy. This theory, which predicts a sinusoidal variation in the magnetization along the long axis of the wire, depends on an assumption that the magnetization is constant within a cross section of the wire. In this Comment we use micromagnetic modeling to show that this assumption does not hold in any relevant setting. For very thin wires, we show that a uniform magnetization configuration is the lowest energy state, which is consistent with some of the larger exchange stiffness results from Bergmann et al. [Phys. Rev. B 77, 054415 (2008)]. For thicker wires, such as those in the referenced experimental systems, the micromagnetic simulations produce magnetization patterns containing vortices. Across all wire thickness, the sinusoidal configuration has higher energy density than the vortex configuration and is therefore not attained. The micromagnetic simulations explain not only the periodic magnetization patterns observed in experiments but also the occasional absence (or disappearance) of periodic structures as described in the literature.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LEBECKI, Krzysztof, Michael J. DONAHUE, 2010. Comment on Frustrated magnetization in Co nanowires: Competition between crystal anisotropy and demagnetization energy. In: Physical Review B. 2010, 82(9), 096401. Available under: doi: 10.1103/PhysRevB.82.096401BibTex
@article{Lebecki2010Comme-940, year={2010}, doi={10.1103/PhysRevB.82.096401}, title={Comment on Frustrated magnetization in Co nanowires: Competition between crystal anisotropy and demagnetization energy}, number={9}, volume={82}, journal={Physical Review B}, author={Lebecki, Krzysztof and Donahue, Michael J.}, note={Article Number: 096401} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/940"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:52:21Z</dc:date> <dc:language>eng</dc:language> <dc:creator>Lebecki, Krzysztof</dc:creator> <dc:contributor>Donahue, Michael J.</dc:contributor> <dc:creator>Donahue, Michael J.</dc:creator> <dc:contributor>Lebecki, Krzysztof</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:52:21Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Comment on Frustrated magnetization in Co nanowires: Competition between crystal anisotropy and demagnetization energy</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:abstract xml:lang="eng">Bergmann et al. [Phys. Rev. B 77, 054415 (2008)] present an analytical theory explaining the behavior of ferromagnetic cobalt nanowires with perpendicular anisotropy. This theory, which predicts a sinusoidal variation in the magnetization along the long axis of the wire, depends on an assumption that the magnetization is constant within a cross section of the wire. In this Comment we use micromagnetic modeling to show that this assumption does not hold in any relevant setting. For very thin wires, we show that a uniform magnetization configuration is the lowest energy state, which is consistent with some of the larger exchange stiffness results from Bergmann et al. [Phys. Rev. B 77, 054415 (2008)]. For thicker wires, such as those in the referenced experimental systems, the micromagnetic simulations produce magnetization patterns containing vortices. Across all wire thickness, the sinusoidal configuration has higher energy density than the vortex configuration and is therefore not attained. The micromagnetic simulations explain not only the periodic magnetization patterns observed in experiments but also the occasional absence (or disappearance) of periodic structures as described in the literature.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/940"/> <dcterms:issued>2010</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>Publ. in: Physical Review B 82 (2010), 9, 096401</dcterms:bibliographicCitation> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> </rdf:Description> </rdf:RDF>