Publikation:

TreePartNet : neural decomposition of point clouds for 3D tree reconstruction

Lade...
Vorschaubild

Dateien

Liu_2-13rmq34uz5o9h2.pdf
Liu_2-13rmq34uz5o9h2.pdfGröße: 2.83 MBDownloads: 1244

Datum

2021

Autor:innen

Liu, Yanchao
Benes, Bedrich
Zhang, Xiaopeng
Huang, Hui

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACM Transactions on Graphics. Association for Computing Machinery (ACM). 2021, 40(6), 232. ISSN 0730-0301. eISSN 1557-7368. Available under: doi: 10.1145/3478513.3480486

Zusammenfassung

We present TreePartNet, a neural network aimed at reconstructing tree geometry from point clouds obtained by scanning real trees. Our key idea is to learn a natural neural decomposition exploiting the assumption that a tree comprises locally cylindrical shapes. In particular, reconstruction is a two-step process. First, two networks are used to detect priors from the point clouds. One detects semantic branching points, and the other network is trained to learn a cylindrical representation of the branches. In the second step, we apply a neural merging module to reduce the cylindrical representation to a final set of generalized cylinders combined by branches. We demonstrate results of reconstructing realistic tree geometry for a variety of input models and with varying input point quality, e.g., noise, outliers, and incompleteness. We evaluate our approach extensively by using data from both synthetic and real trees and comparing it with alternative methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LIU, Yanchao, Jianwei GUO, Bedrich BENES, Oliver DEUSSEN, Xiaopeng ZHANG, Hui HUANG, 2021. TreePartNet : neural decomposition of point clouds for 3D tree reconstruction. In: ACM Transactions on Graphics. Association for Computing Machinery (ACM). 2021, 40(6), 232. ISSN 0730-0301. eISSN 1557-7368. Available under: doi: 10.1145/3478513.3480486
BibTex
@article{Liu2021TreeP-55977,
  year={2021},
  doi={10.1145/3478513.3480486},
  title={TreePartNet : neural decomposition of point clouds for 3D tree reconstruction},
  number={6},
  volume={40},
  issn={0730-0301},
  journal={ACM Transactions on Graphics},
  author={Liu, Yanchao and Guo, Jianwei and Benes, Bedrich and Deussen, Oliver and Zhang, Xiaopeng and Huang, Hui},
  note={Article Number: 232}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55977">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-22T08:07:58Z</dcterms:available>
    <dc:creator>Guo, Jianwei</dc:creator>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:creator>Liu, Yanchao</dc:creator>
    <dc:creator>Zhang, Xiaopeng</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55977/1/Liu_2-13rmq34uz5o9h2.pdf"/>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55977/1/Liu_2-13rmq34uz5o9h2.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55977"/>
    <dc:contributor>Zhang, Xiaopeng</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-22T08:07:58Z</dc:date>
    <dc:contributor>Huang, Hui</dc:contributor>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>TreePartNet : neural decomposition of point clouds for 3D tree reconstruction</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Huang, Hui</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Guo, Jianwei</dc:contributor>
    <dc:contributor>Liu, Yanchao</dc:contributor>
    <dc:contributor>Benes, Bedrich</dc:contributor>
    <dcterms:abstract xml:lang="eng">We present TreePartNet, a neural network aimed at reconstructing tree geometry from point clouds obtained by scanning real trees. Our key idea is to learn a natural neural decomposition exploiting the assumption that a tree comprises locally cylindrical shapes. In particular, reconstruction is a two-step process. First, two networks are used to detect priors from the point clouds. One detects semantic branching points, and the other network is trained to learn a cylindrical representation of the branches. In the second step, we apply a neural merging module to reduce the cylindrical representation to a final set of generalized cylinders combined by branches. We demonstrate results of reconstructing realistic tree geometry for a variety of input models and with varying input point quality, e.g., noise, outliers, and incompleteness. We evaluate our approach extensively by using data from both synthetic and real trees and comparing it with alternative methods.</dcterms:abstract>
    <dc:creator>Benes, Bedrich</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen