Publikation:

Real closed exponential fields

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

D'Aquino, Paola
Knight, Julia F.
Lange, Karen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Fundamenta Mathematicae. 2012, 219(2), pp. 163-190. ISSN 0016-2736. eISSN 1730-6329. Available under: doi: 10.4064/fm219-2-6

Zusammenfassung

Ressayre considered real closed exponential fields and “exponential” integer parts, i.e., integer parts that respect the exponential function. In 1993, he outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre's construction and then analyze the complexity. Ressayre's construction is canonical once we fix the real closed exponential field R, a residue field section k, and a well ordering ≺ on R. The construction is clearly constructible over these objects. Each step looks effective, but there may be many steps. We produce an example of an exponential field R with a residue field section k and a well ordering ≺ on R such that Dc(R) is low and k and ≺ are Δ 0 3, and Ressayre's construction cannot be completed in LωCK1.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690D'AQUINO, Paola, Julia F. KNIGHT, Salma KUHLMANN, Karen LANGE, 2012. Real closed exponential fields. In: Fundamenta Mathematicae. 2012, 219(2), pp. 163-190. ISSN 0016-2736. eISSN 1730-6329. Available under: doi: 10.4064/fm219-2-6
BibTex
@article{DAquino2012close-23418,
  year={2012},
  doi={10.4064/fm219-2-6},
  title={Real closed exponential fields},
  number={2},
  volume={219},
  issn={0016-2736},
  journal={Fundamenta Mathematicae},
  pages={163--190},
  author={D'Aquino, Paola and Knight, Julia F. and Kuhlmann, Salma and Lange, Karen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23418">
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23418"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-27T07:25:20Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-27T07:25:20Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Ressayre considered real closed exponential fields and “exponential” integer parts, i.e., integer parts that respect the exponential function. In 1993, he outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre's construction and then analyze the complexity. Ressayre's construction is canonical once we fix the real closed exponential field R, a residue field section k, and a well ordering ≺ on R. The construction is clearly constructible over these objects. Each step looks effective, but there may be many steps. We produce an example of an exponential field R with a residue field section k and a well ordering ≺ on R such that D&lt;sup&gt;c&lt;/sup&gt;(R) is low and k and ≺ are Δ 0 3, and Ressayre's construction cannot be completed in L&lt;sub&gt;ωCK1&lt;/sub&gt;.</dcterms:abstract>
    <dc:contributor>D'Aquino, Paola</dc:contributor>
    <dc:creator>D'Aquino, Paola</dc:creator>
    <dc:contributor>Knight, Julia F.</dc:contributor>
    <dc:contributor>Lange, Karen</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
    <dc:creator>Lange, Karen</dc:creator>
    <dcterms:bibliographicCitation>Fundamenta mathematicae ; 219 (2012), 2. - S. 163-190</dcterms:bibliographicCitation>
    <dc:creator>Knight, Julia F.</dc:creator>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>Real closed exponential fields</dcterms:title>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen