Publikation: Real closed exponential fields
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Ressayre considered real closed exponential fields and “exponential” integer parts, i.e., integer parts that respect the exponential function. In 1993, he outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre's construction and then analyze the complexity. Ressayre's construction is canonical once we fix the real closed exponential field R, a residue field section k, and a well ordering ≺ on R. The construction is clearly constructible over these objects. Each step looks effective, but there may be many steps. We produce an example of an exponential field R with a residue field section k and a well ordering ≺ on R such that Dc(R) is low and k and ≺ are Δ 0 3, and Ressayre's construction cannot be completed in LωCK1.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
D'AQUINO, Paola, Julia F. KNIGHT, Salma KUHLMANN, Karen LANGE, 2012. Real closed exponential fields. In: Fundamenta Mathematicae. 2012, 219(2), pp. 163-190. ISSN 0016-2736. eISSN 1730-6329. Available under: doi: 10.4064/fm219-2-6BibTex
@article{DAquino2012close-23418, year={2012}, doi={10.4064/fm219-2-6}, title={Real closed exponential fields}, number={2}, volume={219}, issn={0016-2736}, journal={Fundamenta Mathematicae}, pages={163--190}, author={D'Aquino, Paola and Knight, Julia F. and Kuhlmann, Salma and Lange, Karen} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23418"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23418"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-27T07:25:20Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2012</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-27T07:25:20Z</dcterms:available> <dcterms:abstract xml:lang="eng">Ressayre considered real closed exponential fields and “exponential” integer parts, i.e., integer parts that respect the exponential function. In 1993, he outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre's construction and then analyze the complexity. Ressayre's construction is canonical once we fix the real closed exponential field R, a residue field section k, and a well ordering ≺ on R. The construction is clearly constructible over these objects. Each step looks effective, but there may be many steps. We produce an example of an exponential field R with a residue field section k and a well ordering ≺ on R such that D<sup>c</sup>(R) is low and k and ≺ are Δ 0 3, and Ressayre's construction cannot be completed in L<sub>ωCK1</sub>.</dcterms:abstract> <dc:contributor>D'Aquino, Paola</dc:contributor> <dc:creator>D'Aquino, Paola</dc:creator> <dc:contributor>Knight, Julia F.</dc:contributor> <dc:contributor>Lange, Karen</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dc:creator>Lange, Karen</dc:creator> <dcterms:bibliographicCitation>Fundamenta mathematicae ; 219 (2012), 2. - S. 163-190</dcterms:bibliographicCitation> <dc:creator>Knight, Julia F.</dc:creator> <dc:creator>Kuhlmann, Salma</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Real closed exponential fields</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>