Publikation: Stable Length Distributions in Colocalized Polymerizing and Depolymerizing Protein Filaments
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
A model for the dynamics of the length distribution in colocalized groups of polar polymer filaments is presented. It considers nucleation, polymerization at plus-ends, and depolymerization at minus-ends and is derived as a continuous macroscopic limit from a discrete description. Its main feature is a nonlinear coupling due to competition of the depolymerizing ends for the limited supply of a depolymerization agent. The model takes the form of an initial-boundary value problem for a one-dimensional nonlinear hyperbolic conservation law, subject to a nonlinear, nonlocal boundary condition. Besides existence and uniqueness of entropy solutions, convergence to a steady state is proven. Technical difficulties are caused by the fact that the prescribed boundary data are not always assumed by entropy solutions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
FREISTÜHLER, Heinrich, Christian SCHMEISER, Nikolaos SFAKIANAKIS, 2012. Stable Length Distributions in Colocalized Polymerizing and Depolymerizing Protein Filaments. In: SIAM Journal on Applied Mathematics. 2012, 72(5), pp. 1428-1448. ISSN 0036-1399. eISSN 1095-712X. Available under: doi: 10.1137/100815773BibTex
@article{Freistuhler2012Stabl-23247, year={2012}, doi={10.1137/100815773}, title={Stable Length Distributions in Colocalized Polymerizing and Depolymerizing Protein Filaments}, number={5}, volume={72}, issn={0036-1399}, journal={SIAM Journal on Applied Mathematics}, pages={1428--1448}, author={Freistühler, Heinrich and Schmeiser, Christian and Sfakianakis, Nikolaos} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23247"> <dcterms:issued>2012</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-15T10:02:12Z</dc:date> <dc:creator>Freistühler, Heinrich</dc:creator> <dcterms:title>Stable Length Distributions in Colocalized Polymerizing and Depolymerizing Protein Filaments</dcterms:title> <dc:creator>Schmeiser, Christian</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>SIAM Journal on Applied Mathematics ; 72 (2012), 5. - S. 1428-1448</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23247"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Sfakianakis, Nikolaos</dc:contributor> <dc:creator>Sfakianakis, Nikolaos</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Schmeiser, Christian</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-15T10:02:12Z</dcterms:available> <dcterms:abstract xml:lang="eng">A model for the dynamics of the length distribution in colocalized groups of polar polymer filaments is presented. It considers nucleation, polymerization at plus-ends, and depolymerization at minus-ends and is derived as a continuous macroscopic limit from a discrete description. Its main feature is a nonlinear coupling due to competition of the depolymerizing ends for the limited supply of a depolymerization agent. The model takes the form of an initial-boundary value problem for a one-dimensional nonlinear hyperbolic conservation law, subject to a nonlinear, nonlocal boundary condition. Besides existence and uniqueness of entropy solutions, convergence to a steady state is proven. Technical difficulties are caused by the fact that the prescribed boundary data are not always assumed by entropy solutions.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Freistühler, Heinrich</dc:contributor> </rdf:Description> </rdf:RDF>