Publikation:

Searching in High-Dimensional Spaces : Index Structures for Improving the Performance of Multimedia Databases

Lade...
Vorschaubild

Dateien

IS1_ACMSurvey.pdf
IS1_ACMSurvey.pdfGröße: 755.01 KBDownloads: 1687

Datum

2001

Autor:innen

Böhm, Christian
Berchtold, Stefan

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACM computing surveys. 2001, 33(3), pp. 322-373. Available under: doi: 10.1145/502807.502809

Zusammenfassung

During the last decade, multimedia databases have become increasingly important in many application areas such as medicine, CAD, geography, or molecular biology. An important research issue in the field of multimedia databases is the content based retrieval of similar multimedia objects such as images, text, and videos. However, in contrast to searching data in a relational database, a content based retrieval requires the search of similar objects as a basic functionality of the database system. Most of the approaches addressing similarity search use a so-called feature transformation which transforms important properties of the multimedia objects into high-dimensional points (feature vectors). Thus, the similarity search is transformed into a search of points in the feature space which are close to a given query point in the high-dimensional feature space. Query Processing in high-dimensional spaces has therefore been a very active research area over the last few years. A number of new index structures and algorithms have been proposed. It has been shown that the new index structures considerably improve the performance in querying large multimedia databases. Based on recent tutorials [BK 98, BK 00], in this survey we provide an overview of the current state-of-the-art in querying multimedia databases, describing the index structures and algorithms for an efficient query processing in high-dimensional spaces. We identify the problems of processing queries in high-dimensional space, and we provide an overview of the proposed approaches to overcome these problems.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BÖHM, Christian, Stefan BERCHTOLD, Daniel A. KEIM, 2001. Searching in High-Dimensional Spaces : Index Structures for Improving the Performance of Multimedia Databases. In: ACM computing surveys. 2001, 33(3), pp. 322-373. Available under: doi: 10.1145/502807.502809
BibTex
@article{Bohm2001Searc-5902,
  year={2001},
  doi={10.1145/502807.502809},
  title={Searching in High-Dimensional Spaces : Index Structures for Improving the Performance of Multimedia Databases},
  number={3},
  volume={33},
  journal={ACM computing surveys},
  pages={322--373},
  author={Böhm, Christian and Berchtold, Stefan and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5902">
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:17Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Searching in High-Dimensional Spaces : Index Structures for Improving the Performance of Multimedia Databases</dcterms:title>
    <dc:contributor>Böhm, Christian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Berchtold, Stefan</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:17Z</dc:date>
    <dc:creator>Böhm, Christian</dc:creator>
    <dcterms:bibliographicCitation>First publ. in: ACM computing surveys 33 (2001), 3, pp. 322-373</dcterms:bibliographicCitation>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5902/1/IS1_ACMSurvey.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:abstract xml:lang="eng">During the last decade, multimedia databases have become increasingly important in many application areas such as medicine, CAD, geography, or molecular biology. An important research issue in the field of multimedia databases is the content based retrieval of similar multimedia objects such as images, text, and videos. However, in contrast to searching data in a relational database, a content based retrieval requires the search of similar objects as a basic functionality of the database system. Most of the approaches addressing similarity search use a so-called feature transformation which transforms important properties of the multimedia objects into high-dimensional points (feature vectors). Thus, the similarity search is transformed into a search of points in the feature space which are close to a given query point in the high-dimensional feature space. Query Processing in high-dimensional spaces has therefore been a very active research area over the last few years. A number of new index structures and algorithms have been proposed. It has been shown that the new index structures considerably improve the performance in querying large multimedia databases. Based on recent tutorials [BK 98, BK 00], in this survey we provide an overview of the current state-of-the-art in querying multimedia databases, describing the index structures and algorithms for an efficient query processing in high-dimensional spaces. We identify the problems of processing queries in high-dimensional space, and we provide an overview of the proposed approaches to overcome these problems.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5902"/>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5902/1/IS1_ACMSurvey.pdf"/>
    <dcterms:issued>2001</dcterms:issued>
    <dc:creator>Berchtold, Stefan</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen