Publikation: Searching in High-Dimensional Spaces : Index Structures for Improving the Performance of Multimedia Databases
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
During the last decade, multimedia databases have become increasingly important in many application areas such as medicine, CAD, geography, or molecular biology. An important research issue in the field of multimedia databases is the content based retrieval of similar multimedia objects such as images, text, and videos. However, in contrast to searching data in a relational database, a content based retrieval requires the search of similar objects as a basic functionality of the database system. Most of the approaches addressing similarity search use a so-called feature transformation which transforms important properties of the multimedia objects into high-dimensional points (feature vectors). Thus, the similarity search is transformed into a search of points in the feature space which are close to a given query point in the high-dimensional feature space. Query Processing in high-dimensional spaces has therefore been a very active research area over the last few years. A number of new index structures and algorithms have been proposed. It has been shown that the new index structures considerably improve the performance in querying large multimedia databases. Based on recent tutorials [BK 98, BK 00], in this survey we provide an overview of the current state-of-the-art in querying multimedia databases, describing the index structures and algorithms for an efficient query processing in high-dimensional spaces. We identify the problems of processing queries in high-dimensional space, and we provide an overview of the proposed approaches to overcome these problems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BÖHM, Christian, Stefan BERCHTOLD, Daniel A. KEIM, 2001. Searching in High-Dimensional Spaces : Index Structures for Improving the Performance of Multimedia Databases. In: ACM computing surveys. 2001, 33(3), pp. 322-373. Available under: doi: 10.1145/502807.502809BibTex
@article{Bohm2001Searc-5902, year={2001}, doi={10.1145/502807.502809}, title={Searching in High-Dimensional Spaces : Index Structures for Improving the Performance of Multimedia Databases}, number={3}, volume={33}, journal={ACM computing surveys}, pages={322--373}, author={Böhm, Christian and Berchtold, Stefan and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5902"> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:format>application/pdf</dc:format> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:17Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Searching in High-Dimensional Spaces : Index Structures for Improving the Performance of Multimedia Databases</dcterms:title> <dc:contributor>Böhm, Christian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Berchtold, Stefan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:17Z</dc:date> <dc:creator>Böhm, Christian</dc:creator> <dcterms:bibliographicCitation>First publ. in: ACM computing surveys 33 (2001), 3, pp. 322-373</dcterms:bibliographicCitation> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5902/1/IS1_ACMSurvey.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:abstract xml:lang="eng">During the last decade, multimedia databases have become increasingly important in many application areas such as medicine, CAD, geography, or molecular biology. An important research issue in the field of multimedia databases is the content based retrieval of similar multimedia objects such as images, text, and videos. However, in contrast to searching data in a relational database, a content based retrieval requires the search of similar objects as a basic functionality of the database system. Most of the approaches addressing similarity search use a so-called feature transformation which transforms important properties of the multimedia objects into high-dimensional points (feature vectors). Thus, the similarity search is transformed into a search of points in the feature space which are close to a given query point in the high-dimensional feature space. Query Processing in high-dimensional spaces has therefore been a very active research area over the last few years. A number of new index structures and algorithms have been proposed. It has been shown that the new index structures considerably improve the performance in querying large multimedia databases. Based on recent tutorials [BK 98, BK 00], in this survey we provide an overview of the current state-of-the-art in querying multimedia databases, describing the index structures and algorithms for an efficient query processing in high-dimensional spaces. We identify the problems of processing queries in high-dimensional space, and we provide an overview of the proposed approaches to overcome these problems.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5902"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5902/1/IS1_ACMSurvey.pdf"/> <dcterms:issued>2001</dcterms:issued> <dc:creator>Berchtold, Stefan</dc:creator> </rdf:Description> </rdf:RDF>