Publikation: Quality metrics in high-dimensional data visualization : An overview and systematization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, we present a systematization of techniques that use quality metrics to help in the visual exploration of meaningful patterns in high-dimensional data. In a number of recent papers, different quality metrics are proposed to automate the demanding search through large spaces of alternative visualizations (e.g., alternative projections or ordering), allowing the user to concentrate on the most promising visualizations suggested by the quality metrics. Over the last decade, this approach has witnessed a remarkable development but few reflections exist on how these methods are related to each other and how the approach can be developed further. For this purpose, we provide an overview of approaches that use quality metrics in high-dimensional data visualization and propose a systematization based on a thorough literature review. We carefully analyze the papers and derive a set of factors for discriminating the quality metrics, visualization techniques, and the process itself. The process is described through a reworked version of the well-known information visualization pipeline. We demonstrate the usefulness of our model by applying it to several existing approaches that use quality metrics, and we provide reflections on implications of our model for future research.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BERTINI, Enrico, Andrada TATU, Daniel A. KEIM, 2011. Quality metrics in high-dimensional data visualization : An overview and systematization. In: IEEE Transactions on Visualization and Computer Graphics. 2011, 17(12), pp. 2203-2212. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2011.229BibTex
@article{Bertini2011-12Quali-19047, year={2011}, doi={10.1109/TVCG.2011.229}, title={Quality metrics in high-dimensional data visualization : An overview and systematization}, number={12}, volume={17}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={2203--2212}, author={Bertini, Enrico and Tatu, Andrada and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/19047"> <dcterms:issued>2011-12</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-18T10:38:13Z</dc:date> <dcterms:title>Quality metrics in high-dimensional data visualization : An overview and systematization</dcterms:title> <dcterms:bibliographicCitation>First publ. in: IEEE Transactions on Visualization and Computer Graphics ; 17 (2011), 12. - pp. 2203-2212</dcterms:bibliographicCitation> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-04-18T10:38:13Z</dcterms:available> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:abstract xml:lang="eng">In this paper, we present a systematization of techniques that use quality metrics to help in the visual exploration of meaningful patterns in high-dimensional data. In a number of recent papers, different quality metrics are proposed to automate the demanding search through large spaces of alternative visualizations (e.g., alternative projections or ordering), allowing the user to concentrate on the most promising visualizations suggested by the quality metrics. Over the last decade, this approach has witnessed a remarkable development but few reflections exist on how these methods are related to each other and how the approach can be developed further. For this purpose, we provide an overview of approaches that use quality metrics in high-dimensional data visualization and propose a systematization based on a thorough literature review. We carefully analyze the papers and derive a set of factors for discriminating the quality metrics, visualization techniques, and the process itself. The process is described through a reworked version of the well-known information visualization pipeline. We demonstrate the usefulness of our model by applying it to several existing approaches that use quality metrics, and we provide reflections on implications of our model for future research.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/19047"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Tatu, Andrada</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Bertini, Enrico</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Tatu, Andrada</dc:creator> <dc:contributor>Bertini, Enrico</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>