Publikation:

Secretory Mechanisms in Paramecium

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

LEMOS, José R., ed., Govindan DAYANITHI, ed.. Neurosecretion : Secretory Mechanisms. Cham: Springer, 2020, pp. 271-290. Masterclass in Neuroendocrinology. 8. ISBN 978-3-030-22988-7. Available under: doi: 10.1007/978-3-030-22989-4_13

Zusammenfassung

A Paramecium cell possesses two widely different types of secretory activity. One is the release from dense core secretory organelles, the trichocysts, serving for predator defense by the most rapid known synchronous process: single events lasting <1 ms and <80 ms for the whole population of stimulated cells. The second type is the periodic release of water and excess of ions, notably Ca2+, by the contractile vacuole complex which thus serves for osmoregulation and ionic balance. Trichocyst secretion encompasses organelle docking at regularly placed sites at the cell membrane, with assembly of SNARE proteins and an undefined Ca2+ sensor. Upon stimulation and increase in [Ca2+], membrane fusion and release of contents take place with a speed and synchrony unsurpassed by other dense core vesicle systems. Also exocytosis–endocytosis coupling is relatively fast (<270 ms), so that the entire process takes 350 ms. The apparent time constants are, thus, τexo = 57 ms and τendo = 126 ms; the decay of the cortical Ca2+ signal proceeds with τ = 8 s. Contact with exogenous Ca2+ after exocytotic pore formation triggers automatically explosive decondensation (several-fold elongation of the spindle-shaped trichocyst contents). The two contractile vacuoles are permanently docked at specific sites of the cell membrane. Their membrane fuses with the cell membrane, also at epigenetically predetermined sites, periodically every ~10 s, when luminal osmotic pressure has sufficiently increased, probably by mechanosensitive channels enriched by the scaffolding protein, stomatin. Both types of secretory activity depend on local Ca2+ increase. In the case of trichocysts, Ca2+ for membrane fusion is provided by store-operated Ca2+ entry (SOCE) in synchrony with the release of Ca2+ from alveolar sacs, the cortical Ca2+ stores, via ryanodine receptor-like Ca2+-release channels. Remarkably, contractile vacuole complexes also use SNAREs and they are also surrounded by Ca2+ stores, but here the mechanism of [Ca2+]i increase for membrane fusion remains to be determined.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Calcium (Ca2+), Ciliate, Osmoregulation, Paramecium, Phagocytosis, Secretion

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690PLATTNER, Helmut, 2020. Secretory Mechanisms in Paramecium. In: LEMOS, José R., ed., Govindan DAYANITHI, ed.. Neurosecretion : Secretory Mechanisms. Cham: Springer, 2020, pp. 271-290. Masterclass in Neuroendocrinology. 8. ISBN 978-3-030-22988-7. Available under: doi: 10.1007/978-3-030-22989-4_13
BibTex
@incollection{Plattner2020-04-01Secre-49884,
  year={2020},
  doi={10.1007/978-3-030-22989-4_13},
  title={Secretory Mechanisms in Paramecium},
  number={8},
  isbn={978-3-030-22988-7},
  publisher={Springer},
  address={Cham},
  series={Masterclass in Neuroendocrinology},
  booktitle={Neurosecretion : Secretory Mechanisms},
  pages={271--290},
  editor={Lemos, José R. and Dayanithi, Govindan},
  author={Plattner, Helmut}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49884">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:title>Secretory Mechanisms in Paramecium</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2020-04-01</dcterms:issued>
    <dc:creator>Plattner, Helmut</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49884"/>
    <dc:contributor>Plattner, Helmut</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-16T11:53:24Z</dc:date>
    <dcterms:abstract xml:lang="eng">A Paramecium cell possesses two widely different types of secretory activity. One is the release from dense core secretory organelles, the trichocysts, serving for predator defense by the most rapid known synchronous process: single events lasting &lt;1 ms and &lt;80 ms for the whole population of stimulated cells. The second type is the periodic release of water and excess of ions, notably Ca&lt;sup&gt;2+&lt;/sup&gt;, by the contractile vacuole complex which thus serves for osmoregulation and ionic balance. Trichocyst secretion encompasses organelle docking at regularly placed sites at the cell membrane, with assembly of SNARE proteins and an undefined Ca&lt;sup&gt;2+&lt;/sup&gt; sensor. Upon stimulation and increase in [Ca&lt;sup&gt;2+&lt;/sup&gt;], membrane fusion and release of contents take place with a speed and synchrony unsurpassed by other dense core vesicle systems. Also exocytosis–endocytosis coupling is relatively fast (&lt;270 ms), so that the entire process takes 350 ms. The apparent time constants are, thus, τ&lt;sub&gt;exo&lt;/sub&gt; = 57 ms and τ&lt;sub&gt;endo&lt;/sub&gt; = 126 ms; the decay of the cortical Ca&lt;sub&gt;2+&lt;/sub&gt; signal proceeds with τ = 8 s. Contact with exogenous Ca&lt;sub&gt;2+&lt;/sub&gt; after exocytotic pore formation triggers automatically explosive decondensation (several-fold elongation of the spindle-shaped trichocyst contents). The two contractile vacuoles are permanently docked at specific sites of the cell membrane. Their membrane fuses with the cell membrane, also at epigenetically predetermined sites, periodically every ~10 s, when luminal osmotic pressure has sufficiently increased, probably by mechanosensitive channels enriched by the scaffolding protein, stomatin. Both types of secretory activity depend on local Ca&lt;sub&gt;2+&lt;/sub&gt; increase. In the case of trichocysts, Ca&lt;sub&gt;2+&lt;/sub&gt; for membrane fusion is provided by store-operated Ca&lt;sub&gt;2+&lt;/sub&gt; entry (SOCE) in synchrony with the release of Ca&lt;sub&gt;2+&lt;/sub&gt; from alveolar sacs, the cortical Ca&lt;sub&gt;2+&lt;/sub&gt; stores, via ryanodine receptor-like Ca&lt;sub&gt;2+&lt;/sub&gt;-release channels. Remarkably, contractile vacuole complexes also use SNAREs and they are also surrounded by Ca&lt;sub&gt;2+&lt;/sub&gt; stores, but here the mechanism of [Ca&lt;sub&gt;2+&lt;/sub&gt;]i increase for membrane fusion remains to be determined.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-16T11:53:24Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen