Asymptotic laws and preasymptotic correction formulas for the relaxation near glass-transition singularities

Lade...
Vorschaubild
Dateien
Datum
1997
Autor:innen
Franosch, Thomas
Fuchs, Matthias
Götze, Wolfgang
Singh, A. P.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
unikn.publication.listelement.citation.prefix.version.undefined
Physical Review E. 1997, 55(6), pp. 7153-7176. Available under: doi: 10.1103/PhysRevE.55.7153
Zusammenfassung

Within the mode-coupling theory (MCT) for the dynamics of simple liquids, the leading corrections to the asymptotic solutions for the relaxation in the vicinity of an ideal glass transition are derived. The formulas are used to determine the range of validity of the scaling-law description of the MCT results for the a and ß processes in glass-forming systems. Solutions of the MCT equations of motion are calculated for a hard-sphere colloidal suspension model and compared with the derived analytical results. The leading-order formulas are shown to describe the major qualitative features of the bifurcation scenario near the transition and the leadingplus-next-to-leading-order formulas are demonstrated to give a quantitative description of the evolution of structural relaxation for the model.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690FRANOSCH, Thomas, Matthias FUCHS, Wolfgang GÖTZE, Matthias R. MAYR, A. P. SINGH, 1997. Asymptotic laws and preasymptotic correction formulas for the relaxation near glass-transition singularities. In: Physical Review E. 1997, 55(6), pp. 7153-7176. Available under: doi: 10.1103/PhysRevE.55.7153
BibTex
@article{Franosch1997Asymp-4772,
  year={1997},
  doi={10.1103/PhysRevE.55.7153},
  title={Asymptotic laws and preasymptotic correction formulas for the relaxation near glass-transition singularities},
  number={6},
  volume={55},
  journal={Physical Review E},
  pages={7153--7176},
  author={Franosch, Thomas and Fuchs, Matthias and Götze, Wolfgang and Mayr, Matthias R. and Singh, A. P.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/4772">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:contributor>Singh, A. P.</dc:contributor>
    <dcterms:issued>1997</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:creator>Singh, A. P.</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/4772"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/4772/1/Asymptotic_laws_and_preasymptotic_correction_formulas.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:50:13Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Within the mode-coupling theory (MCT) for the dynamics of simple liquids, the leading corrections to the asymptotic solutions for the relaxation in the vicinity of an ideal glass transition are derived. The formulas are used to determine the range of validity of the scaling-law description of the MCT results for the a and ß processes in glass-forming systems. Solutions of the MCT equations of motion are calculated for a hard-sphere colloidal suspension model and compared with the derived analytical results. The leading-order formulas are shown to describe the major qualitative features of the bifurcation scenario near the transition and the leadingplus-next-to-leading-order formulas are demonstrated to give a quantitative description of the evolution of structural relaxation for the model.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Franosch, Thomas</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T14:50:13Z</dc:date>
    <dc:creator>Franosch, Thomas</dc:creator>
    <dcterms:bibliographicCitation>First publ. in: Physical Review E 55 (1997), 6, pp. 7153-7176</dcterms:bibliographicCitation>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/4772/1/Asymptotic_laws_and_preasymptotic_correction_formulas.pdf"/>
    <dc:creator>Mayr, Matthias R.</dc:creator>
    <dc:creator>Götze, Wolfgang</dc:creator>
    <dc:contributor>Fuchs, Matthias</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Götze, Wolfgang</dc:contributor>
    <dcterms:title>Asymptotic laws and preasymptotic correction formulas for the relaxation near glass-transition singularities</dcterms:title>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Fuchs, Matthias</dc:creator>
    <dc:contributor>Mayr, Matthias R.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet