Pixel Bar Charts : A Visualization Technique for Very Large Multi-Attribute Data Sets
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Simple presentation graphics are intuitive and easy-to-use, but show only highly aggregated data presenting only a very small number of data values (as in the case of bar charts) and may have a high degree of overlap occluding a significant portion of the data values (as in the case of the x-y plots). In this article, the authors therefore propose a generalization of traditional bar charts and x-y plots, which allows the visualization of large amounts of data. The basic idea is to use the pixels within the bars to present detailed information of the data records. The so-called pixel bar charts retain the intuitiveness of traditional bar charts while allowing very large data sets to be visualized in an effective way. It is shown that, for an effective pixel placement, a complex optimization problem has to be solved. The authors then present an algorithm which efficiently solves the problem. The application to a number of real-world ecommerce data sets shows the wide applicability and usefulness of this new idea, and a comparison to other well-known visualization techniques (parallel coordinates and spiral techniques) shows a number of clear advantages.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KEIM, Daniel A., Ming C. HAO, Umeshwar DAYAL, Meichun HSU, 2002. Pixel Bar Charts : A Visualization Technique for Very Large Multi-Attribute Data Sets. In: Information visualization. 2002, 1(1), pp. 20-34. ISSN 1473-8716. eISSN 1473-8724. Available under: doi: 10.1057/palgrave.ivs.9500003BibTex
@article{Keim2002Pixel-5464, year={2002}, doi={10.1057/palgrave.ivs.9500003}, title={Pixel Bar Charts : A Visualization Technique for Very Large Multi-Attribute Data Sets}, number={1}, volume={1}, issn={1473-8716}, journal={Information visualization}, pages={20--34}, author={Keim, Daniel A. and Hao, Ming C. and Dayal, Umeshwar and Hsu, Meichun} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5464"> <dc:creator>Hao, Ming C.</dc:creator> <dcterms:abstract xml:lang="eng">Simple presentation graphics are intuitive and easy-to-use, but show only highly aggregated data presenting only a very small number of data values (as in the case of bar charts) and may have a high degree of overlap occluding a significant portion of the data values (as in the case of the x-y plots). In this article, the authors therefore propose a generalization of traditional bar charts and x-y plots, which allows the visualization of large amounts of data. The basic idea is to use the pixels within the bars to present detailed information of the data records. The so-called pixel bar charts retain the intuitiveness of traditional bar charts while allowing very large data sets to be visualized in an effective way. It is shown that, for an effective pixel placement, a complex optimization problem has to be solved. The authors then present an algorithm which efficiently solves the problem. The application to a number of real-world ecommerce data sets shows the wide applicability and usefulness of this new idea, and a comparison to other well-known visualization techniques (parallel coordinates and spiral techniques) shows a number of clear advantages.</dcterms:abstract> <dc:creator>Hsu, Meichun</dc:creator> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5464/1/pbc01.pdf"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5464"/> <dcterms:title>Pixel Bar Charts : A Visualization Technique for Very Large Multi-Attribute Data Sets</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5464/1/pbc01.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:37Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:format>application/pdf</dc:format> <dcterms:issued>2002</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hsu, Meichun</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:55:37Z</dcterms:available> <dcterms:bibliographicCitation>First publ. in: Information visualization 2 (2002), 1, pp. 20-34</dcterms:bibliographicCitation> <dc:contributor>Keim, Daniel A.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Hao, Ming C.</dc:contributor> <dc:creator>Dayal, Umeshwar</dc:creator> <dc:contributor>Dayal, Umeshwar</dc:contributor> </rdf:Description> </rdf:RDF>