Publikation: Visual Data Mining Techniques
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Never before in history has data been generated at such high volumes as it is today. Exploring and analyzing the vast volumes of data has become increasingly difficult. Information visualization and visual data mining can help to deal with the flood of information. The advantage of visual data exploration is that the user is directly involved in the data mining process. There are a large number of information visualization techniques that have been developed over the last two decades to support the exploration of large data sets. In this paper, we propose a classification of information visualization and visual data mining techniques based on the data type to be visualized, the visualization technique, and the interaction technique. We illustrate the classification using a few examples, and indicate some directions for future work.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KEIM, Daniel A., Matthew O. WARD, 2002. Visual Data Mining Techniques. In: BERTHOLD, Michael, ed. and others. Intelligent Data Analysis: An Introduction. Berlin: Springer, 2002, pp. 2-27BibTex
@incollection{Keim2002Visua-5510, year={2002}, title={Visual Data Mining Techniques}, publisher={Springer}, address={Berlin}, booktitle={Intelligent Data Analysis: An Introduction}, pages={2--27}, editor={Berthold, Michael}, author={Keim, Daniel A. and Ward, Matthew O.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5510"> <dc:creator>Ward, Matthew O.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:07Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5510"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:07Z</dcterms:available> <dcterms:title>Visual Data Mining Techniques</dcterms:title> <dc:contributor>Ward, Matthew O.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5510/1/onlyCh12.pdf"/> <dcterms:issued>2002</dcterms:issued> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5510/1/onlyCh12.pdf"/> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:abstract xml:lang="eng">Never before in history has data been generated at such high volumes as it is today. Exploring and analyzing the vast volumes of data has become increasingly difficult. Information visualization and visual data mining can help to deal with the flood of information. The advantage of visual data exploration is that the user is directly involved in the data mining process. There are a large number of information visualization techniques that have been developed over the last two decades to support the exploration of large data sets. In this paper, we propose a classification of information visualization and visual data mining techniques based on the data type to be visualized, the visualization technique, and the interaction technique. We illustrate the classification using a few examples, and indicate some directions for future work.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:format>application/pdf</dc:format> <dcterms:bibliographicCitation>First publ. in: Intelligent Data Analysis: An Introduction / Michael Berthold ... (eds.). Berlin: Springer, 2002, pp. 2-27</dcterms:bibliographicCitation> </rdf:Description> </rdf:RDF>