Publikation:

Visual Data Mining Techniques

Lade...
Vorschaubild

Dateien

onlyCh12.pdf
onlyCh12.pdfGröße: 1.88 MBDownloads: 930

Datum

2002

Autor:innen

Ward, Matthew O.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Sammelband
Publikationsstatus
Published

Erschienen in

BERTHOLD, Michael, ed. and others. Intelligent Data Analysis: An Introduction. Berlin: Springer, 2002, pp. 2-27

Zusammenfassung

Never before in history has data been generated at such high volumes as it is today. Exploring and analyzing the vast volumes of data has become increasingly difficult. Information visualization and visual data mining can help to deal with the flood of information. The advantage of visual data exploration is that the user is directly involved in the data mining process. There are a large number of information visualization techniques that have been developed over the last two decades to support the exploration of large data sets. In this paper, we propose a classification of information visualization and visual data mining techniques based on the data type to be visualized, the visualization technique, and the interaction technique. We illustrate the classification using a few examples, and indicate some directions for future work.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KEIM, Daniel A., Matthew O. WARD, 2002. Visual Data Mining Techniques. In: BERTHOLD, Michael, ed. and others. Intelligent Data Analysis: An Introduction. Berlin: Springer, 2002, pp. 2-27
BibTex
@incollection{Keim2002Visua-5510,
  year={2002},
  title={Visual Data Mining Techniques},
  publisher={Springer},
  address={Berlin},
  booktitle={Intelligent Data Analysis: An Introduction},
  pages={2--27},
  editor={Berthold, Michael},
  author={Keim, Daniel A. and Ward, Matthew O.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5510">
    <dc:creator>Ward, Matthew O.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:07Z</dc:date>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5510"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:56:07Z</dcterms:available>
    <dcterms:title>Visual Data Mining Techniques</dcterms:title>
    <dc:contributor>Ward, Matthew O.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5510/1/onlyCh12.pdf"/>
    <dcterms:issued>2002</dcterms:issued>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5510/1/onlyCh12.pdf"/>
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dcterms:abstract xml:lang="eng">Never before in history has data been generated at such high volumes as it is today. Exploring and analyzing the vast volumes of data has become increasingly difficult. Information visualization and visual data mining can help to deal with the flood of information. The advantage of visual data exploration is that the user is directly involved in the data mining process. There are a large number of information visualization techniques that have been developed over the last two decades to support the exploration of large data sets. In this paper, we propose a classification of information visualization and visual data mining techniques based on the data type to be visualized, the visualization technique, and the interaction technique. We illustrate the classification using a few examples, and indicate some directions for future work.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:bibliographicCitation>First publ. in: Intelligent Data Analysis: An Introduction / Michael Berthold ... (eds.). Berlin: Springer, 2002, pp. 2-27</dcterms:bibliographicCitation>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen