Infinite time recognizability from generic oracles and the recognizable jump operator

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

By a theorem of Sacks, if a real x is recursive relative to all elements of a set of positive Lebesgue measure, x is recursive. This statement, and the analogous statement for non-meagerness instead of positive Lebesgue measure, have been shown to carry over to many models of transfinite computations in: Notre Dame Journal of Formal Logic , to appear, arXiv:1307.0160 [math.LO]. Here, we start exploring another analogue concerning recognizability rather than computability. For a notion of relativized recognizability (introduced in: Annals of Pure and Applied Logic 165 (9) (2014), 1353–1532, for ITRMs and generalized here to various other machine types), we show that, for Infinite Time Turing Machines (ITTMs), if a real x is recognizable relative to all elements of a non-meager Borel set Y , then x is recognizable. We also show that a relativized version of this statement holds for Infinite Time Register Machines (ITRMs). This extends our work in: Evolving Computability: 11th Conference on Computability in Europe , 2015, pp. 137–145, where we obtained the (unrelativized) result for ITRMs. We then introduce a jump operator for recognizability, examine its set-theoretical content and show that the recognizable jumps for ITRMs and ITTMs are primitive-recursively equivalent, even though these two models are otherwise of vastly different strength. Finally, we introduce degrees of recognizability by considering the transitive closure of relativized recognizability and connect it with the recognizable jump operator to obtain a solution to Post’s problem for degrees of recognizability.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Infinite Time Turing Machine, ordinal computability, recognizability, genericity, jump operator
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690CARL, Merlin, 2017. Infinite time recognizability from generic oracles and the recognizable jump operator. In: Computability. 2017, 6(3), pp. 223-247. ISSN 2211-3568. eISSN 2211-3576. Available under: doi: 10.3233/COM-160061
BibTex
@article{Carl2017-08-07Infin-41224,
  year={2017},
  doi={10.3233/COM-160061},
  title={Infinite time recognizability from generic oracles and the recognizable jump operator},
  number={3},
  volume={6},
  issn={2211-3568},
  journal={Computability},
  pages={223--247},
  author={Carl, Merlin}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41224">
    <dcterms:title>Infinite time recognizability from generic oracles and the recognizable jump operator</dcterms:title>
    <dc:contributor>Carl, Merlin</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2017-08-07</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-05T13:39:30Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-05T13:39:30Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Carl, Merlin</dc:creator>
    <dcterms:abstract xml:lang="eng">By a theorem of Sacks, if a real x is recursive relative to all elements of a set of positive Lebesgue measure, x is recursive. This statement, and the analogous statement for non-meagerness instead of positive Lebesgue measure, have been shown to carry over to many models of transfinite computations in: Notre Dame Journal of Formal Logic , to appear, arXiv:1307.0160 [math.LO]. Here, we start exploring another analogue concerning recognizability rather than computability. For a notion of relativized recognizability (introduced in: Annals of Pure and Applied Logic 165 (9) (2014), 1353–1532, for ITRMs and generalized here to various other machine types), we show that, for Infinite Time Turing Machines (ITTMs), if a real x is recognizable relative to all elements of a non-meager Borel set Y , then x is recognizable. We also show that a relativized version of this statement holds for Infinite Time Register Machines (ITRMs). This extends our work in: Evolving Computability: 11th Conference on Computability in Europe , 2015, pp. 137–145, where we obtained the (unrelativized) result for ITRMs. We then introduce a jump operator for recognizability, examine its set-theoretical content and show that the recognizable jumps for ITRMs and ITTMs are primitive-recursively equivalent, even though these two models are otherwise of vastly different strength. Finally, we introduce degrees of recognizability by considering the transitive closure of relativized recognizability and connect it with the recognizable jump operator to obtain a solution to Post’s problem for degrees of recognizability.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41224"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen