Publikation: Single-Electron Spin Qubits in Silicon for Quantum Computing
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
National Natural Science Foundation of China: 12304560, 92265113, 12074368, and 12034018
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The recent decade has witnessed substantial advancements in silicon quantum computing. Important milestones include demonstrations of quantum gates exceeding the fault-tolerance threshold, high-fidelity single-shot spin readout, hot quantum bits (hot qubits), and compact scalable spin arrays. Silicon qubits hold promise to leverage semiconductor industry technologies into scalable qubit manufacturing. Both the academic and industry communities are striving to push this advantage into reality. However, formidable challenges persist in the quest to develop a fully operational universal quantum computer. This review focuses on single-spin qubits in silicon. First, we start with foundational spin qubit theory. Then, we discuss gate-defined quantum dots and donor dot systems, with a particular emphasis on two-qubit gate operations and the scalability of qubit arrays. Lastly, we address long-distance coupling, highlighting key areas for future research and potential scale-up strategies for this rapidly evolving field.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HU, Guangchong, Wei Wister HUANG, Ranran CAI, Lin WANG, Chih Hwan YANG, Gang CAO, Xiao XUE, Peihao HUANG, Yu HE, 2025. Single-Electron Spin Qubits in Silicon for Quantum Computing. In: Intelligent Computing. American Association for the Advancement of Science (AAAS). 2025, 4, 0115. eISSN 2771-5892. Verfügbar unter: doi: 10.34133/icomputing.0115BibTex
@article{Hu2025-01Singl-74056,
title={Single-Electron Spin Qubits in Silicon for Quantum Computing},
year={2025},
doi={10.34133/icomputing.0115},
volume={4},
journal={Intelligent Computing},
author={Hu, Guangchong and Huang, Wei Wister and Cai, Ranran and Wang, Lin and Yang, Chih Hwan and Cao, Gang and Xue, Xiao and Huang, Peihao and He, Yu},
note={Article Number: 0115}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74056">
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74056"/>
<dc:creator>Yang, Chih Hwan</dc:creator>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dc:creator>Cai, Ranran</dc:creator>
<dc:creator>Cao, Gang</dc:creator>
<dc:creator>Huang, Wei Wister</dc:creator>
<dc:language>eng</dc:language>
<dc:contributor>Cai, Ranran</dc:contributor>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:rights>terms-of-use</dc:rights>
<dc:creator>Hu, Guangchong</dc:creator>
<dc:creator>Wang, Lin</dc:creator>
<dc:creator>He, Yu</dc:creator>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74056/1/Hu_2-13320nzn0kitq5.PDF"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-21T11:14:37Z</dcterms:available>
<dc:contributor>Wang, Lin</dc:contributor>
<dc:contributor>Cao, Gang</dc:contributor>
<dc:contributor>Xue, Xiao</dc:contributor>
<dc:contributor>Yang, Chih Hwan</dc:contributor>
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<dcterms:title>Single-Electron Spin Qubits in Silicon for Quantum Computing</dcterms:title>
<dc:creator>Huang, Peihao</dc:creator>
<dc:creator>Xue, Xiao</dc:creator>
<dc:contributor>Huang, Wei Wister</dc:contributor>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74056/1/Hu_2-13320nzn0kitq5.PDF"/>
<dcterms:issued>2025-01</dcterms:issued>
<dc:contributor>Huang, Peihao</dc:contributor>
<dc:contributor>He, Yu</dc:contributor>
<dc:contributor>Hu, Guangchong</dc:contributor>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-21T11:14:37Z</dc:date>
<dcterms:abstract>The recent decade has witnessed substantial advancements in silicon quantum computing. Important milestones include demonstrations of quantum gates exceeding the fault-tolerance threshold, high-fidelity single-shot spin readout, hot quantum bits (hot qubits), and compact scalable spin arrays. Silicon qubits hold promise to leverage semiconductor industry technologies into scalable qubit manufacturing. Both the academic and industry communities are striving to push this advantage into reality. However, formidable challenges persist in the quest to develop a fully operational universal quantum computer. This review focuses on single-spin qubits in silicon. First, we start with foundational spin qubit theory. Then, we discuss gate-defined quantum dots and donor dot systems, with a particular emphasis on two-qubit gate operations and the scalability of qubit arrays. Lastly, we address long-distance coupling, highlighting key areas for future research and potential scale-up strategies for this rapidly evolving field.</dcterms:abstract>
</rdf:Description>
</rdf:RDF>