Publikation:

Single-Electron Spin Qubits in Silicon for Quantum Computing

Lade...
Vorschaubild

Dateien

Hu_2-13320nzn0kitq5.PDF
Hu_2-13320nzn0kitq5.PDFGröße: 9.38 MBDownloads: 24

Datum

2025

Autor:innen

Hu, Guangchong
Huang, Wei Wister
Cai, Ranran
Yang, Chih Hwan
Cao, Gang
Xue, Xiao
Huang, Peihao
He, Yu

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

National Natural Science Foundation of China: 62174076, 92165210
National Natural Science Foundation of China: 12304560, 92265113, 12074368, and 12034018

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Intelligent Computing. American Association for the Advancement of Science (AAAS). 2025, 4, 0115. eISSN 2771-5892. Verfügbar unter: doi: 10.34133/icomputing.0115

Zusammenfassung

The recent decade has witnessed substantial advancements in silicon quantum computing. Important milestones include demonstrations of quantum gates exceeding the fault-tolerance threshold, high-fidelity single-shot spin readout, hot quantum bits (hot qubits), and compact scalable spin arrays. Silicon qubits hold promise to leverage semiconductor industry technologies into scalable qubit manufacturing. Both the academic and industry communities are striving to push this advantage into reality. However, formidable challenges persist in the quest to develop a fully operational universal quantum computer. This review focuses on single-spin qubits in silicon. First, we start with foundational spin qubit theory. Then, we discuss gate-defined quantum dots and donor dot systems, with a particular emphasis on two-qubit gate operations and the scalability of qubit arrays. Lastly, we address long-distance coupling, highlighting key areas for future research and potential scale-up strategies for this rapidly evolving field.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HU, Guangchong, Wei Wister HUANG, Ranran CAI, Lin WANG, Chih Hwan YANG, Gang CAO, Xiao XUE, Peihao HUANG, Yu HE, 2025. Single-Electron Spin Qubits in Silicon for Quantum Computing. In: Intelligent Computing. American Association for the Advancement of Science (AAAS). 2025, 4, 0115. eISSN 2771-5892. Verfügbar unter: doi: 10.34133/icomputing.0115
BibTex
@article{Hu2025-01Singl-74056,
  title={Single-Electron Spin Qubits in Silicon for Quantum Computing},
  year={2025},
  doi={10.34133/icomputing.0115},
  volume={4},
  journal={Intelligent Computing},
  author={Hu, Guangchong and Huang, Wei Wister and Cai, Ranran and Wang, Lin and Yang, Chih Hwan and Cao, Gang and Xue, Xiao and Huang, Peihao and He, Yu},
  note={Article Number: 0115}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74056">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74056"/>
    <dc:creator>Yang, Chih Hwan</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Cai, Ranran</dc:creator>
    <dc:creator>Cao, Gang</dc:creator>
    <dc:creator>Huang, Wei Wister</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Cai, Ranran</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Hu, Guangchong</dc:creator>
    <dc:creator>Wang, Lin</dc:creator>
    <dc:creator>He, Yu</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74056/1/Hu_2-13320nzn0kitq5.PDF"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-21T11:14:37Z</dcterms:available>
    <dc:contributor>Wang, Lin</dc:contributor>
    <dc:contributor>Cao, Gang</dc:contributor>
    <dc:contributor>Xue, Xiao</dc:contributor>
    <dc:contributor>Yang, Chih Hwan</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Single-Electron Spin Qubits in Silicon for Quantum Computing</dcterms:title>
    <dc:creator>Huang, Peihao</dc:creator>
    <dc:creator>Xue, Xiao</dc:creator>
    <dc:contributor>Huang, Wei Wister</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74056/1/Hu_2-13320nzn0kitq5.PDF"/>
    <dcterms:issued>2025-01</dcterms:issued>
    <dc:contributor>Huang, Peihao</dc:contributor>
    <dc:contributor>He, Yu</dc:contributor>
    <dc:contributor>Hu, Guangchong</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-21T11:14:37Z</dc:date>
    <dcterms:abstract>The recent decade has witnessed substantial advancements in silicon quantum computing. Important milestones include demonstrations of quantum gates exceeding the fault-tolerance threshold, high-fidelity single-shot spin readout, hot quantum bits (hot qubits), and compact scalable spin arrays. Silicon qubits hold promise to leverage semiconductor industry technologies into scalable qubit manufacturing. Both the academic and industry communities are striving to push this advantage into reality. However, formidable challenges persist in the quest to develop a fully operational universal quantum computer. This review focuses on single-spin qubits in silicon. First, we start with foundational spin qubit theory. Then, we discuss gate-defined quantum dots and donor dot systems, with a particular emphasis on two-qubit gate operations and the scalability of qubit arrays. Lastly, we address long-distance coupling, highlighting key areas for future research and potential scale-up strategies for this rapidly evolving field.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen