Publikation: Towards an Advanced System for Real-Time Event Detection in High-Volume Data Streams
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper presents an advanced system for real-time event detection in high-volume data streams. Our main goal is to provide a system, which can handle high-volume data streams and is able to detect events in real-time. Additionally, we perform further steps, such as classifying and ranking events with retrospective analysis. To solve this task we take advantage of a high-performance database system for semi-structured data and extend it with the functionality of continuous querying. The combination of executing queries on the incoming data stream and fast queries on the historical datasets is used as a powerful tool for developing an event detection and information system. Furthermore, we define several event features for improving event classification and for discovering parallelisms, relations, duration, and coherences of events.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WEILER, Andreas, Svetlana MANSMANN, Marc H. SCHOLL, 2012. Towards an Advanced System for Real-Time Event Detection in High-Volume Data Streams. 5th Ph.D. workshop on Information and knowledge (PIKM '12). Maui, Hawaii, USA, 2. Nov. 2012 - 2. Nov. 2012. In: PIKM’12 The Proceedings of the Fifth ACM Ph.D. Workshop in Information and Knowledge. New York: ACM, 2012, pp. 87-90. ISBN 978-1-4503-1721-4. Available under: doi: 10.1145/2389686.2389704BibTex
@inproceedings{Weiler2012Towar-49177, year={2012}, doi={10.1145/2389686.2389704}, title={Towards an Advanced System for Real-Time Event Detection in High-Volume Data Streams}, isbn={978-1-4503-1721-4}, publisher={ACM}, address={New York}, booktitle={PIKM’12 The Proceedings of the Fifth ACM Ph.D. Workshop in Information and Knowledge}, pages={87--90}, author={Weiler, Andreas and Mansmann, Svetlana and Scholl, Marc H.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49177"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Scholl, Marc H.</dc:creator> <dc:creator>Mansmann, Svetlana</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-31T09:27:19Z</dcterms:available> <dcterms:issued>2012</dcterms:issued> <dc:language>eng</dc:language> <dc:contributor>Scholl, Marc H.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-31T09:27:19Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Mansmann, Svetlana</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49177"/> <dc:contributor>Weiler, Andreas</dc:contributor> <dcterms:abstract xml:lang="eng">This paper presents an advanced system for real-time event detection in high-volume data streams. Our main goal is to provide a system, which can handle high-volume data streams and is able to detect events in real-time. Additionally, we perform further steps, such as classifying and ranking events with retrospective analysis. To solve this task we take advantage of a high-performance database system for semi-structured data and extend it with the functionality of continuous querying. The combination of executing queries on the incoming data stream and fast queries on the historical datasets is used as a powerful tool for developing an event detection and information system. Furthermore, we define several event features for improving event classification and for discovering parallelisms, relations, duration, and coherences of events.</dcterms:abstract> <dcterms:title>Towards an Advanced System for Real-Time Event Detection in High-Volume Data Streams</dcterms:title> <dc:creator>Weiler, Andreas</dc:creator> </rdf:Description> </rdf:RDF>