Publikation:

Light Field Intrinsics With a Deep Encoder-Decoder Network

Lade...
Vorschaubild

Dateien

Alperovich_2-12v0m36c2ik507.pdf
Alperovich_2-12v0m36c2ik507.pdfGröße: 2.98 MBDownloads: 532

Datum

2018

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 336978

Projekt

LIA - Light Field Imaging and Analysis
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2018 IEEE Conference on Computer Vision and Pattern Recognition. The Computer Vision Foundation, 2018, pp. 9145-9154. Available under: doi: 10.1109/CVPR.2018.00953

Zusammenfassung

We present a fully convolutional autoencoder for light fields, which jointly encodes stacks of horizontal and vertical epipolar plane images through a deep network of residual layers. The complex structure of the light field is thus reduced to a comparatively low-dimensional representation, which can be decoded in a variety of ways. The different pathways of upconvolution we currently support are for disparity estimation and separation of the lightfield into diffuse and specular intrinsic components. The key idea is that we can jointly perform unsupervised training for the autoencoder path of the network, and supervised training for the other decoders. This way, we find features which are both tailored to the respective tasks and generalize well to datasets for which only example light fields are available. We provide an extensive evaluation on synthetic light field data, and show that the network yields good results on previously unseen real world data captured by a Lytro Illum camera and various gantries.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

CVPR 2018 : IEEE Conference on Computer Vision and Pattern Recognition, 18. Juni 2018 - 22. Juni 2018, Salt Lake City, Utah
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ALPEROVICH, Anna, Ole JOHANNSEN, Michael STRECKE, Bastian GOLDLÜCKE, 2018. Light Field Intrinsics With a Deep Encoder-Decoder Network. CVPR 2018 : IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, Utah, 18. Juni 2018 - 22. Juni 2018. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition. The Computer Vision Foundation, 2018, pp. 9145-9154. Available under: doi: 10.1109/CVPR.2018.00953
BibTex
@inproceedings{Alperovich2018Light-44382,
  year={2018},
  doi={10.1109/CVPR.2018.00953},
  title={Light Field Intrinsics With a Deep Encoder-Decoder Network},
  url={http://openaccess.thecvf.com/content_cvpr_2018/html/Alperovich_Light_Field_Intrinsics_CVPR_2018_paper.html},
  publisher={The Computer Vision Foundation},
  booktitle={2018 IEEE Conference on Computer Vision and Pattern Recognition},
  pages={9145--9154},
  author={Alperovich, Anna and Johannsen, Ole and Strecke, Michael and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44382">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Alperovich, Anna</dc:creator>
    <dc:contributor>Strecke, Michael</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Strecke, Michael</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44382/1/Alperovich_2-12v0m36c2ik507.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44382/1/Alperovich_2-12v0m36c2ik507.pdf"/>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dcterms:abstract xml:lang="eng">We present a fully convolutional autoencoder for light fields, which jointly encodes stacks of horizontal and vertical epipolar plane images through a deep network of residual layers. The complex structure of the light field is thus reduced to a comparatively low-dimensional representation, which can be decoded in a variety of ways. The different pathways of upconvolution we currently support are for disparity estimation and separation of the lightfield into diffuse and specular intrinsic components. The key idea is that we can jointly perform unsupervised training for the autoencoder path of the network, and supervised training for the other decoders. This way, we find features which are both tailored to the respective tasks and generalize well to datasets for which only example light fields are available. We provide an extensive evaluation on synthetic light field data, and show that the network yields good results on previously unseen real world data captured by a Lytro Illum camera and various gantries.</dcterms:abstract>
    <dcterms:title>Light Field Intrinsics With a Deep Encoder-Decoder Network</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T13:13:36Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-12-19T13:13:36Z</dcterms:available>
    <dc:contributor>Alperovich, Anna</dc:contributor>
    <dcterms:issued>2018</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44382"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Johannsen, Ole</dc:contributor>
    <dc:creator>Johannsen, Ole</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen