Publikation: The Role of Uncertainty, Awareness, and Trust in Visual Analytics
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Visual analytics supports humans in generating knowledge from large and often complex datasets. Evidence is collected, collated and cross-linked with our existing knowledge. In the process, a myriad of analytical and visualisation techniques are employed to generate a visual representation of the data. These often introduce their own uncertainties, in addition to the ones inherent in the data, and these propagated and compounded uncertainties can result in impaired decision making. The user's confidence or trust in the results depends on the extent of user's awareness of the underlying uncertainties generated on the system side. This paper unpacks the uncertainties that propagate through visual analytics systems, illustrates how human's perceptual and cognitive biases influence the user's awareness of such uncertainties, and how this affects the user's trust building. The knowledge generation model for visual analytics is used to provide a terminology and framework to discuss the consequences of these aspects in knowledge construction and though examples, machine uncertainty is compared to human trust measures with provenance. Furthermore, guidelines for the design of uncertainty-aware systems are presented that can aid the user in better decision making.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SACHA, Dominik, Hansi SENARATNE, Bum Chul KWON, Geoffrey ELLIS, Daniel A. KEIM, 2016. The Role of Uncertainty, Awareness, and Trust in Visual Analytics. In: IEEE Transactions on Visualization and Computer Graphics. 2016, 22(1), pp. 240-249. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2015.2467591BibTex
@article{Sacha2016Uncer-33530, year={2016}, doi={10.1109/TVCG.2015.2467591}, title={The Role of Uncertainty, Awareness, and Trust in Visual Analytics}, number={1}, volume={22}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={240--249}, author={Sacha, Dominik and Senaratne, Hansi and Kwon, Bum Chul and Ellis, Geoffrey and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33530"> <dcterms:title>The Role of Uncertainty, Awareness, and Trust in Visual Analytics</dcterms:title> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-01T08:26:46Z</dc:date> <dc:creator>Senaratne, Hansi</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Kwon, Bum Chul</dc:contributor> <dcterms:issued>2016</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33530"/> <dc:creator>Ellis, Geoffrey</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Ellis, Geoffrey</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:creator>Kwon, Bum Chul</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Sacha, Dominik</dc:creator> <dc:contributor>Senaratne, Hansi</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-01T08:26:46Z</dcterms:available> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33530/1/Sacha_2-12ol6j8q80gu80.pdf"/> <dcterms:abstract xml:lang="eng">Visual analytics supports humans in generating knowledge from large and often complex datasets. Evidence is collected, collated and cross-linked with our existing knowledge. In the process, a myriad of analytical and visualisation techniques are employed to generate a visual representation of the data. These often introduce their own uncertainties, in addition to the ones inherent in the data, and these propagated and compounded uncertainties can result in impaired decision making. The user's confidence or trust in the results depends on the extent of user's awareness of the underlying uncertainties generated on the system side. This paper unpacks the uncertainties that propagate through visual analytics systems, illustrates how human's perceptual and cognitive biases influence the user's awareness of such uncertainties, and how this affects the user's trust building. The knowledge generation model for visual analytics is used to provide a terminology and framework to discuss the consequences of these aspects in knowledge construction and though examples, machine uncertainty is compared to human trust measures with provenance. Furthermore, guidelines for the design of uncertainty-aware systems are presented that can aid the user in better decision making.</dcterms:abstract> <dc:contributor>Sacha, Dominik</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33530/1/Sacha_2-12ol6j8q80gu80.pdf"/> </rdf:Description> </rdf:RDF>