Publikation:

Teachers’ judgment accuracy : a replication check by psychometric meta-analysis

Lade...
Vorschaubild

Dateien

Kaufmann_2-12l5frzgmk1096.pdf
Kaufmann_2-12l5frzgmk1096.pdfGröße: 561.84 KBDownloads: 9

Datum

2024

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

PLOS ONE. Public Library of Science (PLoS). 2024, 19(7), e0307594. eISSN 1932-6203. Verfügbar unter: doi: 10.1371/journal.pone.0307594

Zusammenfassung

Teachers’ judgment accuracy is a core competency in their daily business. Due to its importance, several meta-analyses have estimated how accurately teachers judge students’ academic achievements by measuring teachers’ judgment accuracy (i.e., the correlation between teachers’ judgments of students’ academic abilities and students’ scores on achievement tests). In our study, we considered previous meta-analyses and updated these databases and the analytic combination of data using a psychometric meta-analysis to explain variations in results across studies. Our results demonstrate the importance of considering aggregation and publication bias as well as correcting for the most important artifacts (e.g., sampling and measurement error), but also that most studies fail to report the data needed for conducting a meta-analysis according to current best practices. We find that previous reviews have underestimated teachers’ judgment accuracy and overestimated the variance in estimates of teachers’ judgment accuracy across studies because at least 10% of this variance may be associated with common artifacts. We conclude that ignoring artifacts, as in classical meta-analysis, may lead one to erroneously conclude that moderator variables, instead of artifacts, explain any variation. We describe how online data repositories could improve the scientific process and the potential for using psychometric meta-analysis to synthesize results and assess replicability.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
150 Psychologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KAUFMANN, Esther, 2024. Teachers’ judgment accuracy : a replication check by psychometric meta-analysis. In: PLOS ONE. Public Library of Science (PLoS). 2024, 19(7), e0307594. eISSN 1932-6203. Verfügbar unter: doi: 10.1371/journal.pone.0307594
BibTex
@article{Kaufmann2024-07-25Teach-70585,
  year={2024},
  doi={10.1371/journal.pone.0307594},
  title={Teachers’ judgment accuracy : a replication check by psychometric meta-analysis},
  number={7},
  volume={19},
  journal={PLOS ONE},
  author={Kaufmann, Esther},
  note={Article Number: e0307594}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70585">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70585"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:issued>2024-07-25</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-15T13:20:58Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70585/1/Kaufmann_2-12l5frzgmk1096.pdf"/>
    <dcterms:title>Teachers’ judgment accuracy : a replication check by psychometric meta-analysis</dcterms:title>
    <dcterms:abstract>Teachers’ judgment accuracy is a core competency in their daily business. Due to its importance, several meta-analyses have estimated how accurately teachers judge students’ academic achievements by measuring teachers’ judgment accuracy (i.e., the correlation between teachers’ judgments of students’ academic abilities and students’ scores on achievement tests). In our study, we considered previous meta-analyses and updated these databases and the analytic combination of data using a psychometric meta-analysis to explain variations in results across studies. Our results demonstrate the importance of considering aggregation and publication bias as well as correcting for the most important artifacts (e.g., sampling and measurement error), but also that most studies fail to report the data needed for conducting a meta-analysis according to current best practices. We find that previous reviews have underestimated teachers’ judgment accuracy and overestimated the variance in estimates of teachers’ judgment accuracy across studies because at least 10% of this variance may be associated with common artifacts. We conclude that ignoring artifacts, as in classical meta-analysis, may lead one to erroneously conclude that moderator variables, instead of artifacts, explain any variation. We describe how online data repositories could improve the scientific process and the potential for using psychometric meta-analysis to synthesize results and assess replicability.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Kaufmann, Esther</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70585/1/Kaufmann_2-12l5frzgmk1096.pdf"/>
    <dc:creator>Kaufmann, Esther</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-08-15T13:20:58Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen