Publikation:

Visual Soccer Analytics : Understanding the Characteristics of Collective Team Movement Based on Feature-Driven Analysis and Abstraction

Lade...
Vorschaubild

Dateien

Stein_0-309987.pdf
Stein_0-309987.pdfGröße: 8.98 MBDownloads: 1423

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ISPRS International Journal of Geo-Information. 2015, 4(4), pp. 2159-2184. eISSN 2220-9964. Available under: doi: 10.3390/ijgi4042159

Zusammenfassung

With recent advances in sensor technologies, large amounts of movement data have become available in many application areas. A novel, promising application is the data-driven analysis of team sport. Specifically, soccer matches comprise rich, multivariate movement data at high temporal and geospatial resolution. Capturing and analyzing complex movement patterns and interdependencies between the players with respect to various characteristics is challenging. So far, soccer experts manually post-analyze game situations and depict certain patterns with respect to their experience. We propose a visual analysis system for interactive identification of soccer patterns and situations being of interest to the analyst. Our approach builds on a preliminary system, which is enhanced by semantic features defined together with a soccer domain expert. The system includes a range of useful visualizations to show the ranking of features over time and plots the change of game play situations, both helping the analyst to interpret complex game situations. A novel workflow includes improving the analysis process by a learning stage, taking into account user feedback. We evaluate our approach by analyzing real-world soccer matches, illustrate several use cases and collect additional expert feedback. The resulting findings are discussed with subject matter experts.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690STEIN, Manuel, Johannes HÄUSSLER, Dominik JÄCKLE, Halldor JANETZKO, Tobias SCHRECK, Daniel A. KEIM, 2015. Visual Soccer Analytics : Understanding the Characteristics of Collective Team Movement Based on Feature-Driven Analysis and Abstraction. In: ISPRS International Journal of Geo-Information. 2015, 4(4), pp. 2159-2184. eISSN 2220-9964. Available under: doi: 10.3390/ijgi4042159
BibTex
@article{Stein2015Visua-32476,
  year={2015},
  doi={10.3390/ijgi4042159},
  title={Visual Soccer Analytics : Understanding the Characteristics of Collective Team Movement Based on Feature-Driven Analysis and Abstraction},
  number={4},
  volume={4},
  journal={ISPRS International Journal of Geo-Information},
  pages={2159--2184},
  author={Stein, Manuel and Häußler, Johannes and Jäckle, Dominik and Janetzko, Halldor and Schreck, Tobias and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32476">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:creator>Stein, Manuel</dc:creator>
    <dc:creator>Häußler, Johannes</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32476/1/Stein_0-309987.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32476"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-18T09:42:57Z</dcterms:available>
    <dcterms:title>Visual Soccer Analytics : Understanding the Characteristics of Collective Team Movement Based on Feature-Driven Analysis and Abstraction</dcterms:title>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Jäckle, Dominik</dc:creator>
    <dc:contributor>Häußler, Johannes</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32476/1/Stein_0-309987.pdf"/>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:contributor>Stein, Manuel</dc:contributor>
    <dcterms:issued>2015</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-18T09:42:57Z</dc:date>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Jäckle, Dominik</dc:contributor>
    <dcterms:abstract xml:lang="eng">With recent advances in sensor technologies, large amounts of movement data have become available in many application areas. A novel, promising application is the data-driven analysis of team sport. Specifically, soccer matches comprise rich, multivariate movement data at high temporal and geospatial resolution. Capturing and analyzing complex movement patterns and interdependencies between the players with respect to various characteristics is challenging. So far, soccer experts manually post-analyze game situations and depict certain patterns with respect to their experience. We propose a visual analysis system for interactive identification of soccer patterns and situations being of interest to the analyst. Our approach builds on a preliminary system, which is enhanced by semantic features defined together with a soccer domain expert. The system includes a range of useful visualizations to show the ranking of features over time and plots the change of game play situations, both helping the analyst to interpret complex game situations. A novel workflow includes improving the analysis process by a learning stage, taking into account user feedback. We evaluate our approach by analyzing real-world soccer matches, illustrate several use cases and collect additional expert feedback. The resulting findings are discussed with subject matter experts.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen