Publikation:

Orbital-free bond breaking via machine learning

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Autor:innen

Snyder, John C.
Hansen, Katja
Blooston, Leo
Müller, Klaus-Robert
Burke, Kieron

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The Journal of Chemical Physics. American Institute of Physics (AIP). 2013, 139(22), 224104. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.4834075

Zusammenfassung

Using a one-dimensional model, we explore the ability of machine learning to approximate the non-interacting kinetic energy density functional of diatomics. This nonlinear interpolation between Kohn-Sham reference calculations can (i) accurately dissociate a diatomic, (ii) be systematically improved with increased reference data and (iii) generate accurate self-consistent densities via a projection method that avoids directions with no data. With relatively few densities, the error due to the interpolation is smaller than typical errors in standard exchange-correlation functionals.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SNYDER, John C., Matthias RUPP, Katja HANSEN, Leo BLOOSTON, Klaus-Robert MÜLLER, Kieron BURKE, 2013. Orbital-free bond breaking via machine learning. In: The Journal of Chemical Physics. American Institute of Physics (AIP). 2013, 139(22), 224104. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.4834075
BibTex
@article{Snyder2013-12-14Orbit-52140,
  year={2013},
  doi={10.1063/1.4834075},
  title={Orbital-free bond breaking via machine learning},
  number={22},
  volume={139},
  issn={0021-9606},
  journal={The Journal of Chemical Physics},
  author={Snyder, John C. and Rupp, Matthias and Hansen, Katja and Blooston, Leo and Müller, Klaus-Robert and Burke, Kieron},
  note={Article Number: 224104}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52140">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T14:15:21Z</dc:date>
    <dc:creator>Blooston, Leo</dc:creator>
    <dc:contributor>Burke, Kieron</dc:contributor>
    <dc:contributor>Müller, Klaus-Robert</dc:contributor>
    <dcterms:title>Orbital-free bond breaking via machine learning</dcterms:title>
    <dc:creator>Snyder, John C.</dc:creator>
    <dc:creator>Hansen, Katja</dc:creator>
    <dc:contributor>Blooston, Leo</dc:contributor>
    <dc:creator>Rupp, Matthias</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52140"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <dcterms:issued>2013-12-14</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T14:15:21Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Using a one-dimensional model, we explore the ability of machine learning to approximate the non-interacting kinetic energy density functional of diatomics. This nonlinear interpolation between Kohn-Sham reference calculations can (i) accurately dissociate a diatomic, (ii) be systematically improved with increased reference data and (iii) generate accurate self-consistent densities via a projection method that avoids directions with no data. With relatively few densities, the error due to the interpolation is smaller than typical errors in standard exchange-correlation functionals.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Burke, Kieron</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Müller, Klaus-Robert</dc:creator>
    <dc:contributor>Snyder, John C.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hansen, Katja</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen