Publikation: Orbital-free bond breaking via machine learning
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2013
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
The Journal of Chemical Physics. American Institute of Physics (AIP). 2013, 139(22), 224104. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.4834075
Zusammenfassung
Using a one-dimensional model, we explore the ability of machine learning to approximate the non-interacting kinetic energy density functional of diatomics. This nonlinear interpolation between Kohn-Sham reference calculations can (i) accurately dissociate a diatomic, (ii) be systematically improved with increased reference data and (iii) generate accurate self-consistent densities via a projection method that avoids directions with no data. With relatively few densities, the error due to the interpolation is smaller than typical errors in standard exchange-correlation functionals.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
SNYDER, John C., Matthias RUPP, Katja HANSEN, Leo BLOOSTON, Klaus-Robert MÜLLER, Kieron BURKE, 2013. Orbital-free bond breaking via machine learning. In: The Journal of Chemical Physics. American Institute of Physics (AIP). 2013, 139(22), 224104. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/1.4834075BibTex
@article{Snyder2013-12-14Orbit-52140, year={2013}, doi={10.1063/1.4834075}, title={Orbital-free bond breaking via machine learning}, number={22}, volume={139}, issn={0021-9606}, journal={The Journal of Chemical Physics}, author={Snyder, John C. and Rupp, Matthias and Hansen, Katja and Blooston, Leo and Müller, Klaus-Robert and Burke, Kieron}, note={Article Number: 224104} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52140"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T14:15:21Z</dc:date> <dc:creator>Blooston, Leo</dc:creator> <dc:contributor>Burke, Kieron</dc:contributor> <dc:contributor>Müller, Klaus-Robert</dc:contributor> <dcterms:title>Orbital-free bond breaking via machine learning</dcterms:title> <dc:creator>Snyder, John C.</dc:creator> <dc:creator>Hansen, Katja</dc:creator> <dc:contributor>Blooston, Leo</dc:contributor> <dc:creator>Rupp, Matthias</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52140"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Rupp, Matthias</dc:contributor> <dcterms:issued>2013-12-14</dcterms:issued> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-15T14:15:21Z</dcterms:available> <dcterms:abstract xml:lang="eng">Using a one-dimensional model, we explore the ability of machine learning to approximate the non-interacting kinetic energy density functional of diatomics. This nonlinear interpolation between Kohn-Sham reference calculations can (i) accurately dissociate a diatomic, (ii) be systematically improved with increased reference data and (iii) generate accurate self-consistent densities via a projection method that avoids directions with no data. With relatively few densities, the error due to the interpolation is smaller than typical errors in standard exchange-correlation functionals.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Burke, Kieron</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Müller, Klaus-Robert</dc:creator> <dc:contributor>Snyder, John C.</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hansen, Katja</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja