Publikation:

Generation of Semigroups for Vector-Valued Pseudodifferential Operators on the Torus

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2016

Autor:innen

Barraza Martínez, Bienvenido
Hernández Monzón, Jairo

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Fourier Analysis and Applications. 2016, 22(4), pp. 823-853. ISSN 1069-5869. eISSN 1531-5851. Available under: doi: 10.1007/s00041-015-9437-7

Zusammenfassung

We consider toroidal pseudodifferential operators with operator-valued symbols, their mapping properties and the generation of analytic semigroups on vector-valued Besov and Sobolev spaces. Here, we restrict ourselves to pseudodifferential operators with x-independent symbols (Fourier multipliers). We show that a parabolic toroidal pseudodifferential operator generates an analytic semigroup on the Besov space Bspq(Tn,E) and on the Sobolev space Wkp(Tn,E), where E is an arbitrary Banach space, 1≤p,q≤∞, s∈R and k∈N0. For the proof of the Sobolev space result, we establish a uniform estimate on the kernel which is given as an infinite parameter-dependent sum. An application to abstract non-autonomous periodic pseudodifferential Cauchy problems gives the existence and uniqueness of classical solutions for such problems.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Pseudodifferential operators ; Vector-valued Sobolev spaces ; Toroidal Fourier transform ; Generation of analytic semigroup

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BARRAZA MARTÍNEZ, Bienvenido, Robert DENK, Jairo HERNÁNDEZ MONZÓN, Tobias NAU, 2016. Generation of Semigroups for Vector-Valued Pseudodifferential Operators on the Torus. In: Journal of Fourier Analysis and Applications. 2016, 22(4), pp. 823-853. ISSN 1069-5869. eISSN 1531-5851. Available under: doi: 10.1007/s00041-015-9437-7
BibTex
@article{BarrazaMartinez2016-08Gener-30781,
  year={2016},
  doi={10.1007/s00041-015-9437-7},
  title={Generation of Semigroups for Vector-Valued Pseudodifferential Operators on the Torus},
  number={4},
  volume={22},
  issn={1069-5869},
  journal={Journal of Fourier Analysis and Applications},
  pages={823--853},
  author={Barraza Martínez, Bienvenido and Denk, Robert and Hernández Monzón, Jairo and Nau, Tobias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30781">
    <dcterms:title>Generation of Semigroups for Vector-Valued Pseudodifferential Operators on the Torus</dcterms:title>
    <dc:creator>Barraza Martínez, Bienvenido</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Barraza Martínez, Bienvenido</dc:contributor>
    <dcterms:issued>2016-08</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">We consider toroidal pseudodifferential operators with operator-valued symbols, their mapping properties and the generation of analytic semigroups on vector-valued Besov and Sobolev spaces. Here, we restrict ourselves to pseudodifferential operators with x-independent symbols (Fourier multipliers). We show that a parabolic toroidal pseudodifferential operator generates an analytic semigroup on the Besov space B&lt;sup&gt;s&lt;/sup&gt;&lt;sub&gt;pq&lt;/sub&gt;(T&lt;sup&gt;n&lt;/sup&gt;,E) and on the Sobolev space W&lt;sup&gt;k&lt;/sup&gt;&lt;sub&gt;p&lt;/sub&gt;(T&lt;sup&gt;n&lt;/sup&gt;,E), where E is an arbitrary Banach space, 1≤p,q≤∞, s∈R and k∈N&lt;sub&gt;0&lt;/sub&gt;. For the proof of the Sobolev space result, we establish a uniform estimate on the kernel which is given as an infinite parameter-dependent sum. An application to abstract non-autonomous periodic pseudodifferential Cauchy problems gives the existence and uniqueness of classical solutions for such problems.</dcterms:abstract>
    <dc:creator>Denk, Robert</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-18T14:40:18Z</dcterms:available>
    <dc:creator>Hernández Monzón, Jairo</dc:creator>
    <dc:creator>Nau, Tobias</dc:creator>
    <dc:contributor>Nau, Tobias</dc:contributor>
    <dc:contributor>Denk, Robert</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/30781"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-18T14:40:18Z</dc:date>
    <dc:contributor>Hernández Monzón, Jairo</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2016-03-18 14:35:15
2015-04-17 11:49:15
* Ausgewählte Version