Subspace Search and Visualization to Make Sense of Alternative Clusterings in High-Dimensional Data

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2012
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
2012 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2012, pp. 63-72. ISBN 978-1-4673-4752-5. Available under: doi: 10.1109/VAST.2012.6400488
Zusammenfassung

In explorative data analysis, the data under consideration often resides in a high-dimensional (HD) data space. Currently many methods are available to analyze this type of data. So far, proposed automatic approaches include dimensionality reduction and cluster analysis, whereby visual-interactive methods aim to provide effective visual mappings to show, relate, and navigate HD data. Furthermore, almost all of these methods conduct the analysis from a singular perspective, meaning that they consider the data in either the original HD data space, or a reduced version thereof. Additionally, HD data spaces often consist of combined features that measure different properties, in which case the particular relationships between the various properties may not be clear to the analysts a priori since it can only be revealed if appropriate feature combinations (subspaces) of the data are taken into consideration. Considering just a single subspace is, however, often not sufficient since different subspaces may show complementary, conjointly, or contradicting relations between data items. Useful information may consequently remain embedded in sets of subspaces of a given HD input data space. Relying on the notion of subspaces, we propose a novel method for the visual analysis of HD data in which we employ an interestingness-guided subspace search algorithm to detect a candidate set of subspaces. Based on appropriately defined subspace similarity functions, we visualize the subspaces and provide navigation facilities to interactively explore large sets of subspaces. Our approach allows users to effectively compare and relate subspaces with respect to involved dimensions and clusters of objects. We apply our approach to synthetic and real data sets. We thereby demonstrate its support for understanding HD data from different perspectives, effectively yielding a more complete view on HD data.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
2012 IEEE Conference on Visual Analytics Science and Technology (VAST), 14. Okt. 2012 - 19. Okt. 2012, Seattle, WA, USA
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690TATU, Andrada, Fabian MAASS, Ines FÄRBER, Enrico BERTINI, Tobias SCHRECK, Thomas SEIDL, Daniel A. KEIM, 2012. Subspace Search and Visualization to Make Sense of Alternative Clusterings in High-Dimensional Data. 2012 IEEE Conference on Visual Analytics Science and Technology (VAST). Seattle, WA, USA, 14. Okt. 2012 - 19. Okt. 2012. In: 2012 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2012, pp. 63-72. ISBN 978-1-4673-4752-5. Available under: doi: 10.1109/VAST.2012.6400488
BibTex
@inproceedings{Tatu2012-10Subsp-22543,
  year={2012},
  doi={10.1109/VAST.2012.6400488},
  title={Subspace Search and Visualization to Make Sense of Alternative Clusterings in High-Dimensional Data},
  isbn={978-1-4673-4752-5},
  publisher={IEEE},
  booktitle={2012 IEEE Conference on Visual Analytics Science and Technology (VAST)},
  pages={63--72},
  author={Tatu, Andrada and Maaß, Fabian and Färber, Ines and Bertini, Enrico and Schreck, Tobias and Seidl, Thomas and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22543">
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Maaß, Fabian</dc:creator>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:contributor>Bertini, Enrico</dc:contributor>
    <dc:creator>Färber, Ines</dc:creator>
    <dcterms:title>Subspace Search and Visualization to Make Sense of Alternative Clusterings in High-Dimensional Data</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2012-10</dcterms:issued>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Seidl, Thomas</dc:contributor>
    <dcterms:abstract xml:lang="eng">In explorative data analysis, the data under consideration often resides in a high-dimensional (HD) data space. Currently many methods are available to analyze this type of data. So far, proposed automatic approaches include dimensionality reduction and cluster analysis, whereby visual-interactive methods aim to provide effective visual mappings to show, relate, and navigate HD data. Furthermore, almost all of these methods conduct the analysis from a singular perspective, meaning that they consider the data in either the original HD data space, or a reduced version thereof. Additionally, HD data spaces often consist of combined features that measure different properties, in which case the particular relationships between the various properties may not be clear to the analysts a priori since it can only be revealed if appropriate feature combinations (subspaces) of the data are taken into consideration. Considering just a single subspace is, however, often not sufficient since different subspaces may show complementary, conjointly, or contradicting relations between data items. Useful information may consequently remain embedded in sets of subspaces of a given HD input data space. Relying on the notion of subspaces, we propose a novel method for the visual analysis of HD data in which we employ an interestingness-guided subspace search algorithm to detect a candidate set of subspaces. Based on appropriately defined subspace similarity functions, we visualize the subspaces and provide navigation facilities to interactively explore large sets of subspaces. Our approach allows users to effectively compare and relate subspaces with respect to involved dimensions and clusters of objects. We apply our approach to synthetic and real data sets. We thereby demonstrate its support for understanding HD data from different perspectives, effectively yielding a more complete view on HD data.</dcterms:abstract>
    <dc:creator>Seidl, Thomas</dc:creator>
    <dc:contributor>Tatu, Andrada</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Tatu, Andrada</dc:creator>
    <dc:contributor>Färber, Ines</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-08T12:06:07Z</dc:date>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:creator>Bertini, Enrico</dc:creator>
    <dc:contributor>Maaß, Fabian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-05-08T12:06:07Z</dcterms:available>
    <dcterms:bibliographicCitation>IEEE Conference on Visual Analytics Science &amp; Technology 2012 : Seattle, Washington, USA, 14 - 19 October 2012 ; Proceedings / Giuseppe Santucci and Matthew Ward (eds.). - Piscataway, NJ : IEEE, 2012, S. 63-72. - ISBN 978-1-4673-4753-2</dcterms:bibliographicCitation>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22543"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen