Publikation: Ising machines with strong bilinear coupling
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Networks of coupled parametric resonators (parametrons) hold promise for parallel computing architectures. En route to realizing complex networks, we report an experimental and theoretical analysis of two coupled parametrons. In contrast to previous studies, we explore the case of strong bilinear coupling between the parametrons, as well as the role of detuning. We show that the system can still operate as an Ising machine in this regime, even though careful calibration is necessary to ensure that the correct solution space is available. Apart from the formation of split normal modes, new states of mixed symmetry are generated. Furthermore, we predict that systems with N>2 parametrons will undergo multiple phase transitions before arriving at a regime that can be equivalent to the Ising problem.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HEUGEL, Toni L., Oded ZILBERBERG, Christian MARTY, R. CHITRA, Alexander EICHLER, 2022. Ising machines with strong bilinear coupling. In: Physical Review Research. American Physical Society (APS). 2022, 4(1), 013149. eISSN 2643-1564. Available under: doi: 10.1103/PhysRevResearch.4.013149BibTex
@article{Heugel2022-02-22Ising-58449, year={2022}, doi={10.1103/PhysRevResearch.4.013149}, title={Ising machines with strong bilinear coupling}, number={1}, volume={4}, journal={Physical Review Research}, author={Heugel, Toni L. and Zilberberg, Oded and Marty, Christian and Chitra, R. and Eichler, Alexander}, note={Article Number: 013149} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58449"> <dc:creator>Zilberberg, Oded</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-31T12:55:06Z</dcterms:available> <dcterms:title>Ising machines with strong bilinear coupling</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58449"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58449/1/Heugel_2-12bsl4314cj0b5.pdf"/> <dc:contributor>Heugel, Toni L.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Eichler, Alexander</dc:contributor> <dc:creator>Heugel, Toni L.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58449/1/Heugel_2-12bsl4314cj0b5.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-31T12:55:06Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:creator>Marty, Christian</dc:creator> <dcterms:issued>2022-02-22</dcterms:issued> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Marty, Christian</dc:contributor> <dc:creator>Chitra, R.</dc:creator> <dc:creator>Eichler, Alexander</dc:creator> <dcterms:abstract xml:lang="eng">Networks of coupled parametric resonators (parametrons) hold promise for parallel computing architectures. En route to realizing complex networks, we report an experimental and theoretical analysis of two coupled parametrons. In contrast to previous studies, we explore the case of strong bilinear coupling between the parametrons, as well as the role of detuning. We show that the system can still operate as an Ising machine in this regime, even though careful calibration is necessary to ensure that the correct solution space is available. Apart from the formation of split normal modes, new states of mixed symmetry are generated. Furthermore, we predict that systems with N>2 parametrons will undergo multiple phase transitions before arriving at a regime that can be equivalent to the Ising problem.</dcterms:abstract> <dc:contributor>Chitra, R.</dc:contributor> <dc:contributor>Zilberberg, Oded</dc:contributor> </rdf:Description> </rdf:RDF>