Publikation:

An evaluation of the run-time and task-based performance of event detection techniques for Twitter

Lade...
Vorschaubild

Dateien

Weiler_0-326718.pdf
Weiler_0-326718.pdfGröße: 622.24 KBDownloads: 473

Datum

2016

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Information Systems. 2016, 62, pp. 207-219. ISSN 0306-4379. eISSN 1873-6076. Available under: doi: 10.1016/j.is.2016.01.003

Zusammenfassung

Twitter׳s increasing popularity as a source of up-to-date news and information about current events has spawned a body of research on event detection techniques for social media data streams. Although all proposed approaches provide some evidence as to the quality of the detected events, none relate this task-based performance to their run-time performance in terms of processing speed, data throughput, or memory usage. In particular, neither a quantitative nor a comparative evaluation of these aspects has been performed to date. In this article, we study the run-time and task-based performance of several state-of-the-art event detection techniques for Twitter. In order to reproducibly compare run-time performance, our approach is based on a general-purpose data stream management system, whereas task-based performance is automatically assessed based on a series of novel measures.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Event detection; Performance evaluation; Twitter social media data stream

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2016. An evaluation of the run-time and task-based performance of event detection techniques for Twitter. In: Information Systems. 2016, 62, pp. 207-219. ISSN 0306-4379. eISSN 1873-6076. Available under: doi: 10.1016/j.is.2016.01.003
BibTex
@article{Weiler2016-12evalu-33581,
  year={2016},
  doi={10.1016/j.is.2016.01.003},
  title={An evaluation of the run-time and task-based performance of event detection techniques for Twitter},
  volume={62},
  issn={0306-4379},
  journal={Information Systems},
  pages={207--219},
  author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33581">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-13T14:39:08Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33581/1/Weiler_0-326718.pdf"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dcterms:title>An evaluation of the run-time and task-based performance of event detection techniques for Twitter</dcterms:title>
    <dcterms:abstract xml:lang="eng">Twitter׳s increasing popularity as a source of up-to-date news and information about current events has spawned a body of research on event detection techniques for social media data streams. Although all proposed approaches provide some evidence as to the quality of the detected events, none relate this task-based performance to their run-time performance in terms of processing speed, data throughput, or memory usage. In particular, neither a quantitative nor a comparative evaluation of these aspects has been performed to date. In this article, we study the run-time and task-based performance of several state-of-the-art event detection techniques for Twitter. In order to reproducibly compare run-time performance, our approach is based on a general-purpose data stream management system, whereas task-based performance is automatically assessed based on a series of novel measures.</dcterms:abstract>
    <dc:creator>Weiler, Andreas</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2016-12</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-13T14:39:08Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dc:creator>Scholl, Marc H.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33581/1/Weiler_0-326718.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33581"/>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen