Publikation: W[1]-Hardness of the k-Center Problem Parameterized by the Skeleton Dimension
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In the k-Center problem, we are given a graph G=(V,E) with positive edge weights and an integer k and the goal is to select k center vertices C⊆V such that the maximum distance from any vertex to the closest center vertex is minimized. On general graphs, the problem is NP-hard and cannot be approximated within a factor less than 2.
Typical applications of the k-Center problem can be found in logistics or urban planning and hence, it is natural to study the problem on transportation networks. Such networks are often characterized as graphs that are (almost) planar or have low doubling dimension, highway dimension or skeleton dimension. It was shown by Feldmann and Marx that k-Center is W[1]-hard on planar graphs of constant doubling dimension when parameterized by the number of centers k, the highway dimension hd and the pathwidth pw [11]. We extend their result and show that even if we additionally parameterize by the skeleton dimension κ , the k-Center problem remains W[1]-hard. Moreover, we prove that under the Exponential Time Hypothesis there is no exact algorithm for k-Center that has runtime f(k,hd,pw,κ)⋅|V|o(pw+κ+k+hd√) for any computable function f.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BLUM, Johannes, 2020. W[1]-Hardness of the k-Center Problem Parameterized by the Skeleton Dimension. Computing and Combinatorics : 26th International Conference, COCOON 2020. Atlanta, GA, USA, 29. Aug. 2020 - 31. Aug. 2020. In: KIM, Donghyun, ed., R. N. UMA, ed., Zhipeng CAI, ed., Dong Hoon LEE, ed.. Computing and Combinatorics : 26th International Conference, COCOON 2020 : Proceedings. Cham: Springer, 2020, pp. 210-221. Lecture Notes in Computer Science. 12273. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-58149-7. Available under: doi: 10.1007/978-3-030-58150-3_17BibTex
@inproceedings{Blum2020W1Har-50800, year={2020}, doi={10.1007/978-3-030-58150-3_17}, title={W[1]-Hardness of the k-Center Problem Parameterized by the Skeleton Dimension}, number={12273}, isbn={978-3-030-58149-7}, issn={0302-9743}, publisher={Springer}, address={Cham}, series={Lecture Notes in Computer Science}, booktitle={Computing and Combinatorics : 26th International Conference, COCOON 2020 : Proceedings}, pages={210--221}, editor={Kim, Donghyun and Uma, R. N. and Cai, Zhipeng and Lee, Dong Hoon}, author={Blum, Johannes} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50800"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>W[1]-Hardness of the k-Center Problem Parameterized by the Skeleton Dimension</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">In the k-Center problem, we are given a graph G=(V,E) with positive edge weights and an integer k and the goal is to select k center vertices C⊆V such that the maximum distance from any vertex to the closest center vertex is minimized. On general graphs, the problem is NP-hard and cannot be approximated within a factor less than 2.<br /><br />Typical applications of the k-Center problem can be found in logistics or urban planning and hence, it is natural to study the problem on transportation networks. Such networks are often characterized as graphs that are (almost) planar or have low doubling dimension, highway dimension or skeleton dimension. It was shown by Feldmann and Marx that k-Center is W[1]-hard on planar graphs of constant doubling dimension when parameterized by the number of centers k, the highway dimension hd and the pathwidth pw [11]. We extend their result and show that even if we additionally parameterize by the skeleton dimension κ , the k-Center problem remains W[1]-hard. Moreover, we prove that under the Exponential Time Hypothesis there is no exact algorithm for k-Center that has runtime f(k,hd,pw,κ)⋅|V|<sup>o(pw+κ+k+hd√)</sup> for any computable function f.</dcterms:abstract> <dc:creator>Blum, Johannes</dc:creator> <dcterms:issued>2020</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-11T11:33:00Z</dc:date> <dc:contributor>Blum, Johannes</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-11T11:33:00Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50800"/> </rdf:Description> </rdf:RDF>