Publikation:

W[1]-Hardness of the k-Center Problem Parameterized by the Skeleton Dimension

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

KIM, Donghyun, ed., R. N. UMA, ed., Zhipeng CAI, ed., Dong Hoon LEE, ed.. Computing and Combinatorics : 26th International Conference, COCOON 2020 : Proceedings. Cham: Springer, 2020, pp. 210-221. Lecture Notes in Computer Science. 12273. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-58149-7. Available under: doi: 10.1007/978-3-030-58150-3_17

Zusammenfassung

In the k-Center problem, we are given a graph G=(V,E) with positive edge weights and an integer k and the goal is to select k center vertices C⊆V such that the maximum distance from any vertex to the closest center vertex is minimized. On general graphs, the problem is NP-hard and cannot be approximated within a factor less than 2.

Typical applications of the k-Center problem can be found in logistics or urban planning and hence, it is natural to study the problem on transportation networks. Such networks are often characterized as graphs that are (almost) planar or have low doubling dimension, highway dimension or skeleton dimension. It was shown by Feldmann and Marx that k-Center is W[1]-hard on planar graphs of constant doubling dimension when parameterized by the number of centers k, the highway dimension hd and the pathwidth pw [11]. We extend their result and show that even if we additionally parameterize by the skeleton dimension κ , the k-Center problem remains W[1]-hard. Moreover, we prove that under the Exponential Time Hypothesis there is no exact algorithm for k-Center that has runtime f(k,hd,pw,κ)⋅|V|o(pw+κ+k+hd√) for any computable function f.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

k-Center, Skeleton dimension, Parameterized complexity

Konferenz

Computing and Combinatorics : 26th International Conference, COCOON 2020, 29. Aug. 2020 - 31. Aug. 2020, Atlanta, GA, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BLUM, Johannes, 2020. W[1]-Hardness of the k-Center Problem Parameterized by the Skeleton Dimension. Computing and Combinatorics : 26th International Conference, COCOON 2020. Atlanta, GA, USA, 29. Aug. 2020 - 31. Aug. 2020. In: KIM, Donghyun, ed., R. N. UMA, ed., Zhipeng CAI, ed., Dong Hoon LEE, ed.. Computing and Combinatorics : 26th International Conference, COCOON 2020 : Proceedings. Cham: Springer, 2020, pp. 210-221. Lecture Notes in Computer Science. 12273. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-58149-7. Available under: doi: 10.1007/978-3-030-58150-3_17
BibTex
@inproceedings{Blum2020W1Har-50800,
  year={2020},
  doi={10.1007/978-3-030-58150-3_17},
  title={W[1]-Hardness of the k-Center Problem Parameterized by the Skeleton Dimension},
  number={12273},
  isbn={978-3-030-58149-7},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Computing and Combinatorics : 26th International Conference, COCOON 2020 : Proceedings},
  pages={210--221},
  editor={Kim, Donghyun and Uma, R. N. and Cai, Zhipeng and Lee, Dong Hoon},
  author={Blum, Johannes}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50800">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:title>W[1]-Hardness of the k-Center Problem Parameterized by the Skeleton Dimension</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">In the k-Center problem, we are given a graph G=(V,E) with positive edge weights and an integer k and the goal is to select k center vertices C⊆V such that the maximum distance from any vertex to the closest center vertex is minimized. On general graphs, the problem is NP-hard and cannot be approximated within a factor less than 2.&lt;br /&gt;&lt;br /&gt;Typical applications of the k-Center problem can be found in logistics or urban planning and hence, it is natural to study the problem on transportation networks. Such networks are often characterized as graphs that are (almost) planar or have low doubling dimension, highway dimension or skeleton dimension. It was shown by Feldmann and Marx that k-Center is W[1]-hard on planar graphs of constant doubling dimension when parameterized by the number of centers k, the highway dimension hd and the pathwidth pw  [11]. We extend their result and show that even if we additionally parameterize by the skeleton dimension κ , the k-Center problem remains W[1]-hard. Moreover, we prove that under the Exponential Time Hypothesis there is no exact algorithm for k-Center that has runtime f(k,hd,pw,κ)⋅|V|&lt;sup&gt;o(pw+κ+k+hd√)&lt;/sup&gt; for any computable function f.</dcterms:abstract>
    <dc:creator>Blum, Johannes</dc:creator>
    <dcterms:issued>2020</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-11T11:33:00Z</dc:date>
    <dc:contributor>Blum, Johannes</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-11T11:33:00Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50800"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen