Publikation: Self-assembly in Patterns with Minimal Surprise : Engineered Self-organization and Adaptation to the Environment
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
For complex and open-ended robot behaviors, it may prove to be important to find an intrinsic driver for pattern formation and self-organization. We apply methods of evolutionary computation and the idea of evolving prediction networks as world models in pair with action-selection networks to implement such a driver, especially in collective robot systems. Giving fitness for good predictions when evolving causes a bias towards easy-to-predict environments and behaviors in the form of emergent patterns, that is, minimal surprise. However, stimulating the emergence of complex behaviors requires to carefully configure allowed actions, sensor models, and the environment. While having shown the emergence of aggregation, dispersion, and flocking before, we increase the scenario’s complexity by studying self-assembly and manage its feasibility by limiting ourselves to a simulated grid world. We observe emergent patterns of self-assembled robots adapted to different environments. Finally, we investigate how minimal surprise can be augmented to engineer self-organization of desired patterns.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KAISER, Tanja Katharina, Heiko HAMANN, 2019. Self-assembly in Patterns with Minimal Surprise : Engineered Self-organization and Adaptation to the Environment. DARS 2018 : 14th International Symposium on Distributed Autonomous Robotic Systems. Boulder, CO, 15. Okt. 2018 - 17. Okt. 2018. In: CORRELL, Nikolaus, ed., Mac SCHWAGER, ed., Michael OTTE, ed.. Distributed Autonomous Robotic Systems : The 14th International Symposium. Cham: Springer, 2019, pp. 183-195. Springer Proceedings in Advanced Robotics. 9. ISSN 2511-1256. eISSN 2511-1264. ISBN 978-3-030-05815-9. Available under: doi: 10.1007/978-3-030-05816-6_13BibTex
@inproceedings{Kaiser2019Selfa-59748, year={2019}, doi={10.1007/978-3-030-05816-6_13}, title={Self-assembly in Patterns with Minimal Surprise : Engineered Self-organization and Adaptation to the Environment}, number={9}, isbn={978-3-030-05815-9}, issn={2511-1256}, publisher={Springer}, address={Cham}, series={Springer Proceedings in Advanced Robotics}, booktitle={Distributed Autonomous Robotic Systems : The 14th International Symposium}, pages={183--195}, editor={Correll, Nikolaus and Schwager, Mac and Otte, Michael}, author={Kaiser, Tanja Katharina and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59748"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-17T12:12:33Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">For complex and open-ended robot behaviors, it may prove to be important to find an intrinsic driver for pattern formation and self-organization. We apply methods of evolutionary computation and the idea of evolving prediction networks as world models in pair with action-selection networks to implement such a driver, especially in collective robot systems. Giving fitness for good predictions when evolving causes a bias towards easy-to-predict environments and behaviors in the form of emergent patterns, that is, minimal surprise. However, stimulating the emergence of complex behaviors requires to carefully configure allowed actions, sensor models, and the environment. While having shown the emergence of aggregation, dispersion, and flocking before, we increase the scenario’s complexity by studying self-assembly and manage its feasibility by limiting ourselves to a simulated grid world. We observe emergent patterns of self-assembled robots adapted to different environments. Finally, we investigate how minimal surprise can be augmented to engineer self-organization of desired patterns.</dcterms:abstract> <dcterms:title>Self-assembly in Patterns with Minimal Surprise : Engineered Self-organization and Adaptation to the Environment</dcterms:title> <dc:contributor>Kaiser, Tanja Katharina</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-17T12:12:33Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Hamann, Heiko</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59748"/> <dc:creator>Hamann, Heiko</dc:creator> <dcterms:issued>2019</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:creator>Kaiser, Tanja Katharina</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>