Publikation:

Self-assembly in Patterns with Minimal Surprise : Engineered Self-organization and Adaptation to the Environment

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CORRELL, Nikolaus, ed., Mac SCHWAGER, ed., Michael OTTE, ed.. Distributed Autonomous Robotic Systems : The 14th International Symposium. Cham: Springer, 2019, pp. 183-195. Springer Proceedings in Advanced Robotics. 9. ISSN 2511-1256. eISSN 2511-1264. ISBN 978-3-030-05815-9. Available under: doi: 10.1007/978-3-030-05816-6_13

Zusammenfassung

For complex and open-ended robot behaviors, it may prove to be important to find an intrinsic driver for pattern formation and self-organization. We apply methods of evolutionary computation and the idea of evolving prediction networks as world models in pair with action-selection networks to implement such a driver, especially in collective robot systems. Giving fitness for good predictions when evolving causes a bias towards easy-to-predict environments and behaviors in the form of emergent patterns, that is, minimal surprise. However, stimulating the emergence of complex behaviors requires to carefully configure allowed actions, sensor models, and the environment. While having shown the emergence of aggregation, dispersion, and flocking before, we increase the scenario’s complexity by studying self-assembly and manage its feasibility by limiting ourselves to a simulated grid world. We observe emergent patterns of self-assembled robots adapted to different environments. Finally, we investigate how minimal surprise can be augmented to engineer self-organization of desired patterns.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Self-assembly, Evolutionary swarm robotics, Pattern formation

Konferenz

DARS 2018 : 14th International Symposium on Distributed Autonomous Robotic Systems, 15. Okt. 2018 - 17. Okt. 2018, Boulder, CO
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KAISER, Tanja Katharina, Heiko HAMANN, 2019. Self-assembly in Patterns with Minimal Surprise : Engineered Self-organization and Adaptation to the Environment. DARS 2018 : 14th International Symposium on Distributed Autonomous Robotic Systems. Boulder, CO, 15. Okt. 2018 - 17. Okt. 2018. In: CORRELL, Nikolaus, ed., Mac SCHWAGER, ed., Michael OTTE, ed.. Distributed Autonomous Robotic Systems : The 14th International Symposium. Cham: Springer, 2019, pp. 183-195. Springer Proceedings in Advanced Robotics. 9. ISSN 2511-1256. eISSN 2511-1264. ISBN 978-3-030-05815-9. Available under: doi: 10.1007/978-3-030-05816-6_13
BibTex
@inproceedings{Kaiser2019Selfa-59748,
  year={2019},
  doi={10.1007/978-3-030-05816-6_13},
  title={Self-assembly in Patterns with Minimal Surprise : Engineered Self-organization and Adaptation to the Environment},
  number={9},
  isbn={978-3-030-05815-9},
  issn={2511-1256},
  publisher={Springer},
  address={Cham},
  series={Springer Proceedings in Advanced Robotics},
  booktitle={Distributed Autonomous Robotic Systems : The 14th International Symposium},
  pages={183--195},
  editor={Correll, Nikolaus and Schwager, Mac and Otte, Michael},
  author={Kaiser, Tanja Katharina and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59748">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-17T12:12:33Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:abstract xml:lang="eng">For complex and open-ended robot behaviors, it may prove to be important to find an intrinsic driver for pattern formation and self-organization. We apply methods of evolutionary computation and the idea of evolving prediction networks as world models in pair with action-selection networks to implement such a driver, especially in collective robot systems. Giving fitness for good predictions when evolving causes a bias towards easy-to-predict environments and behaviors in the form of emergent patterns, that is, minimal surprise. However, stimulating the emergence of complex behaviors requires to carefully configure allowed actions, sensor models, and the environment. While having shown the emergence of aggregation, dispersion, and flocking before, we increase the scenario’s complexity by studying self-assembly and manage its feasibility by limiting ourselves to a simulated grid world. We observe emergent patterns of self-assembled robots adapted to different environments. Finally, we investigate how minimal surprise can be augmented to engineer self-organization of desired patterns.</dcterms:abstract>
    <dcterms:title>Self-assembly in Patterns with Minimal Surprise : Engineered Self-organization and Adaptation to the Environment</dcterms:title>
    <dc:contributor>Kaiser, Tanja Katharina</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-17T12:12:33Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59748"/>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dcterms:issued>2019</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Kaiser, Tanja Katharina</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen