Publikation:

Albero : A Visual Analytics Approach for Probabilistic Weather Forecasting

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2017

Autor:innen

Pelorosso, Leandro
Delrieux, Claudio
Matkovic, Kresimir
Ruiz, Juan
Gröller, M. Eduard
Bruckner, Stefan

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computer Graphics Forum. 2017, 36(7), pp. 135-144. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.13279

Zusammenfassung

Probabilistic weather forecasts are amongst the most popular ways to quantify numerical forecast uncertainties. The analog regression method can quantify uncertainties and express them as probabilities. The method comprises the analysis of errors from a large database of past forecasts generated with a specific numerical model and observational data. Current visualization tools based on this method are essentially automated and provide limited analysis capabilities. In this paper, we propose a novel approach that breaks down the automatic process using the experience and knowledge of the users and creates a new interactive visual workflow. Our approach allows forecasters to study probabilistic forecasts, their inner analogs and observations, their associated spatial errors, and additional statistical information by means of coordinated and linked views. We designed the presented solution following a participatory methodology together with domain experts. Several meteorologists with different backgrounds validated the approach. Two case studies illustrate the capabilities of our solution. It successfully facilitates the analysis of uncertainty and systematic model biases for improved decision-making and process-quality measurements.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DIEHL, Alexandra, Leandro PELOROSSO, Claudio DELRIEUX, Kresimir MATKOVIC, Juan RUIZ, M. Eduard GRÖLLER, Stefan BRUCKNER, 2017. Albero : A Visual Analytics Approach for Probabilistic Weather Forecasting. In: Computer Graphics Forum. 2017, 36(7), pp. 135-144. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.13279
BibTex
@article{Diehl2017-10-13Alber-40954,
  year={2017},
  doi={10.1111/cgf.13279},
  title={Albero : A Visual Analytics Approach for Probabilistic Weather Forecasting},
  number={7},
  volume={36},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={135--144},
  author={Diehl, Alexandra and Pelorosso, Leandro and Delrieux, Claudio and Matkovic, Kresimir and Ruiz, Juan and Gröller, M. Eduard and Bruckner, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40954">
    <dc:creator>Ruiz, Juan</dc:creator>
    <dc:creator>Gröller, M. Eduard</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40954"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-15T13:57:37Z</dc:date>
    <dc:contributor>Delrieux, Claudio</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Gröller, M. Eduard</dc:contributor>
    <dc:creator>Bruckner, Stefan</dc:creator>
    <dc:creator>Delrieux, Claudio</dc:creator>
    <dcterms:title>Albero : A Visual Analytics Approach for Probabilistic Weather Forecasting</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Bruckner, Stefan</dc:contributor>
    <dc:contributor>Diehl, Alexandra</dc:contributor>
    <dc:contributor>Pelorosso, Leandro</dc:contributor>
    <dcterms:abstract xml:lang="eng">Probabilistic weather forecasts are amongst the most popular ways to quantify numerical forecast uncertainties. The analog regression method can quantify uncertainties and express them as probabilities. The method comprises the analysis of errors from a large database of past forecasts generated with a specific numerical model and observational data. Current visualization tools based on this method are essentially automated and provide limited analysis capabilities. In this paper, we propose a novel approach that breaks down the automatic process using the experience and knowledge of the users and creates a new interactive visual workflow. Our approach allows forecasters to study probabilistic forecasts, their inner analogs and observations, their associated spatial errors, and additional statistical information by means of coordinated and linked views. We designed the presented solution following a participatory methodology together with domain experts. Several meteorologists with different backgrounds validated the approach. Two case studies illustrate the capabilities of our solution. It successfully facilitates the analysis of uncertainty and systematic model biases for improved decision-making and process-quality measurements.</dcterms:abstract>
    <dcterms:issued>2017-10-13</dcterms:issued>
    <dc:creator>Matkovic, Kresimir</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-15T13:57:37Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Ruiz, Juan</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Pelorosso, Leandro</dc:creator>
    <dc:contributor>Matkovic, Kresimir</dc:contributor>
    <dc:creator>Diehl, Alexandra</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen