Publikation: Albero : A Visual Analytics Approach for Probabilistic Weather Forecasting
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Probabilistic weather forecasts are amongst the most popular ways to quantify numerical forecast uncertainties. The analog regression method can quantify uncertainties and express them as probabilities. The method comprises the analysis of errors from a large database of past forecasts generated with a specific numerical model and observational data. Current visualization tools based on this method are essentially automated and provide limited analysis capabilities. In this paper, we propose a novel approach that breaks down the automatic process using the experience and knowledge of the users and creates a new interactive visual workflow. Our approach allows forecasters to study probabilistic forecasts, their inner analogs and observations, their associated spatial errors, and additional statistical information by means of coordinated and linked views. We designed the presented solution following a participatory methodology together with domain experts. Several meteorologists with different backgrounds validated the approach. Two case studies illustrate the capabilities of our solution. It successfully facilitates the analysis of uncertainty and systematic model biases for improved decision-making and process-quality measurements.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DIEHL, Alexandra, Leandro PELOROSSO, Claudio DELRIEUX, Kresimir MATKOVIC, Juan RUIZ, M. Eduard GRÖLLER, Stefan BRUCKNER, 2017. Albero : A Visual Analytics Approach for Probabilistic Weather Forecasting. In: Computer Graphics Forum. 2017, 36(7), pp. 135-144. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.13279BibTex
@article{Diehl2017-10-13Alber-40954, year={2017}, doi={10.1111/cgf.13279}, title={Albero : A Visual Analytics Approach for Probabilistic Weather Forecasting}, number={7}, volume={36}, issn={0167-7055}, journal={Computer Graphics Forum}, pages={135--144}, author={Diehl, Alexandra and Pelorosso, Leandro and Delrieux, Claudio and Matkovic, Kresimir and Ruiz, Juan and Gröller, M. Eduard and Bruckner, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40954"> <dc:creator>Ruiz, Juan</dc:creator> <dc:creator>Gröller, M. Eduard</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40954"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-15T13:57:37Z</dc:date> <dc:contributor>Delrieux, Claudio</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Gröller, M. Eduard</dc:contributor> <dc:creator>Bruckner, Stefan</dc:creator> <dc:creator>Delrieux, Claudio</dc:creator> <dcterms:title>Albero : A Visual Analytics Approach for Probabilistic Weather Forecasting</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Bruckner, Stefan</dc:contributor> <dc:contributor>Diehl, Alexandra</dc:contributor> <dc:contributor>Pelorosso, Leandro</dc:contributor> <dcterms:abstract xml:lang="eng">Probabilistic weather forecasts are amongst the most popular ways to quantify numerical forecast uncertainties. The analog regression method can quantify uncertainties and express them as probabilities. The method comprises the analysis of errors from a large database of past forecasts generated with a specific numerical model and observational data. Current visualization tools based on this method are essentially automated and provide limited analysis capabilities. In this paper, we propose a novel approach that breaks down the automatic process using the experience and knowledge of the users and creates a new interactive visual workflow. Our approach allows forecasters to study probabilistic forecasts, their inner analogs and observations, their associated spatial errors, and additional statistical information by means of coordinated and linked views. We designed the presented solution following a participatory methodology together with domain experts. Several meteorologists with different backgrounds validated the approach. Two case studies illustrate the capabilities of our solution. It successfully facilitates the analysis of uncertainty and systematic model biases for improved decision-making and process-quality measurements.</dcterms:abstract> <dcterms:issued>2017-10-13</dcterms:issued> <dc:creator>Matkovic, Kresimir</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-15T13:57:37Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:contributor>Ruiz, Juan</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Pelorosso, Leandro</dc:creator> <dc:contributor>Matkovic, Kresimir</dc:contributor> <dc:creator>Diehl, Alexandra</dc:creator> </rdf:Description> </rdf:RDF>