Publikation: Link analysis in mind maps : a new approach to determining document relatedness
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In a previous paper we presented various ideas on how information retrieval on mind maps could enhance applications such as expert systems, search engines and recommender systems. In this paper we present the first research results. In a brief experiment we researched link analysis respectively citation analysis, if applied to mind maps, is suitable to calculate document relatedness. The basic idea is that if two documents A and B are linked by the same mind map, these documents are likely to be related. This information could be used by item-based document recommender systems. In the example, document B could be recommended to those users interested in document A. In addition, we propose that those documents linked in high proximity within a mind map are more closely related than those documents linked in lower proximity. The results of our experiment support our ideas. It seems that link analysis applied to mind maps can be used for determining the relatedness of documents and therefore for improving document recommender systems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BEEL, Jöran, Bela GIPP, 2010. Link analysis in mind maps : a new approach to determining document relatedness. ICUIMC '10. Suwon, 14. Jan. 2010 - 15. Jan. 2010. In: KIM, Won, ed.. Proceedings of the 4th International Conference on Uniquitous Information Management and Communication. New York: ACM, 2010, 38. ISBN 978-1-60558-893-3. Available under: doi: 10.1145/2108616.2108662BibTex
@inproceedings{Beel2010analy-31085, year={2010}, doi={10.1145/2108616.2108662}, title={Link analysis in mind maps : a new approach to determining document relatedness}, isbn={978-1-60558-893-3}, publisher={ACM}, address={New York}, booktitle={Proceedings of the 4th International Conference on Uniquitous Information Management and Communication}, editor={Kim, Won}, author={Beel, Jöran and Gipp, Bela}, note={Article Number: 38} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31085"> <dc:creator>Gipp, Bela</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Beel, Jöran</dc:contributor> <dc:language>eng</dc:language> <dcterms:title>Link analysis in mind maps : a new approach to determining document relatedness</dcterms:title> <dcterms:abstract xml:lang="eng">In a previous paper we presented various ideas on how information retrieval on mind maps could enhance applications such as expert systems, search engines and recommender systems. In this paper we present the first research results. In a brief experiment we researched link analysis respectively citation analysis, if applied to mind maps, is suitable to calculate document relatedness. The basic idea is that if two documents A and B are linked by the same mind map, these documents are likely to be related. This information could be used by item-based document recommender systems. In the example, document B could be recommended to those users interested in document A. In addition, we propose that those documents linked in high proximity within a mind map are more closely related than those documents linked in lower proximity. The results of our experiment support our ideas. It seems that link analysis applied to mind maps can be used for determining the relatedness of documents and therefore for improving document recommender systems.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31085/1/Beel_0-285718.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31085/1/Beel_0-285718.pdf"/> <dcterms:issued>2010</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-02T06:56:16Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-06-02T06:56:16Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31085"/> <dc:contributor>Gipp, Bela</dc:contributor> <dc:creator>Beel, Jöran</dc:creator> </rdf:Description> </rdf:RDF>