Publikation:

Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue

Lade...
Vorschaubild

Dateien

Al-Saafin_2-125tfy98m8rbn0.pdf
Al-Saafin_2-125tfy98m8rbn0.pdfGröße: 357.57 KBDownloads: 385

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Let A = [aij] be a real symmetric matrix. If f: (0,oo) --> [0,oo) is a Bernstein function, a sufficient condition for the matrix [f(aij)] to have only one positive eigenvalue is presented. By using this result, new results for a symmetric matrix with exactly one positive eigenvalue, e.g., properties of its Hadamard powers, are derived.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Bernstein function, Hadamard power, Hadamard inverse, distance matrix, infinitely divisible matrix, conditionally negative semidefinite matrix

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AL-SAAFIN, Doaa, Jürgen GARLOFF, 2020. Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue
BibTex
@techreport{AlSaafin2020-04-03Suffi-49263,
  year={2020},
  doi={10.1515/spma-2020-0009},
  series={Konstanzer Schriften in Mathematik},
  title={Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue},
  number={390},
  author={Al-Saafin, Doaa and Garloff, Jürgen},
  note={Erschienen in: Special Matrices ; 8 (2020), 1. - S. 98-103. - de Gruyter. - eISSN 2300-7451}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49263">
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49263"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Al-Saafin, Doaa</dc:contributor>
    <dc:creator>Garloff, Jürgen</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract xml:lang="eng">Let A = [a&lt;sub&gt;ij&lt;/sub&gt;] be a real symmetric matrix. If f: (0,oo) --&gt; [0,oo) is a Bernstein function, a sufficient condition for the matrix [f(a&lt;sub&gt;ij&lt;/sub&gt;)] to have only one positive eigenvalue is presented. By using this result, new results for a symmetric matrix with exactly one positive eigenvalue, e.g., properties of its Hadamard powers, are derived.</dcterms:abstract>
    <dcterms:issued>2020-04-03</dcterms:issued>
    <dcterms:title>Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue</dcterms:title>
    <dc:contributor>Garloff, Jürgen</dc:contributor>
    <dc:creator>Al-Saafin, Doaa</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49263/3/Al-Saafin_2-125tfy98m8rbn0.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-23T07:57:12Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49263/3/Al-Saafin_2-125tfy98m8rbn0.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-23T07:57:12Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Erschienen in: Special Matrices ; 8 (2020), 1. - S. 98-103. - de Gruyter. - eISSN 2300-7451
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen