Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue
Lade...
Dateien
Datum
2020
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Published
Erschienen in
Zusammenfassung
Let A = [aij] be a real symmetric matrix. If f: (0,oo) --> [0,oo) is a Bernstein function, a sufficient condition for the matrix [f(aij)] to have only one positive eigenvalue is presented. By using this result, new results for a symmetric matrix with exactly one positive eigenvalue, e.g., properties of its Hadamard powers, are derived.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Bernstein function, Hadamard power, Hadamard inverse, distance matrix, infinitely divisible matrix, conditionally negative semidefinite matrix
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
AL-SAAFIN, Doaa, Jürgen GARLOFF, 2020. Sufficient conditions for symmetric matrices to have exactly one positive eigenvalueBibTex
@techreport{AlSaafin2020-04-03Suffi-49263, year={2020}, doi={10.1515/spma-2020-0009}, series={Konstanzer Schriften in Mathematik}, title={Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue}, number={390}, author={Al-Saafin, Doaa and Garloff, Jürgen}, note={Erschienen in: Special Matrices ; 8 (2020), 1. - S. 98-103. - de Gruyter. - eISSN 2300-7451} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49263"> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49263"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Al-Saafin, Doaa</dc:contributor> <dc:creator>Garloff, Jürgen</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract xml:lang="eng">Let A = [a<sub>ij</sub>] be a real symmetric matrix. If f: (0,oo) --> [0,oo) is a Bernstein function, a sufficient condition for the matrix [f(a<sub>ij</sub>)] to have only one positive eigenvalue is presented. By using this result, new results for a symmetric matrix with exactly one positive eigenvalue, e.g., properties of its Hadamard powers, are derived.</dcterms:abstract> <dcterms:issued>2020-04-03</dcterms:issued> <dcterms:title>Sufficient conditions for symmetric matrices to have exactly one positive eigenvalue</dcterms:title> <dc:contributor>Garloff, Jürgen</dc:contributor> <dc:creator>Al-Saafin, Doaa</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49263/3/Al-Saafin_2-125tfy98m8rbn0.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-23T07:57:12Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49263/3/Al-Saafin_2-125tfy98m8rbn0.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-23T07:57:12Z</dc:date> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Erschienen in: Special Matrices ; 8 (2020), 1. - S. 98-103. - de Gruyter. - eISSN 2300-7451
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja