Publikation:

An optimized greedy reconstruction algorithm for dipole momentum operators

Lade...
Vorschaubild

Dateien

Buchwald_2-125hj4d8zejz47.pdf
Buchwald_2-125hj4d8zejz47.pdfGröße: 385.51 KBDownloads: 1156

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Working Paper/Technical Report
Publikationsstatus
Submitted

Wird erscheinen in

Zusammenfassung

In a previous work (Salomon 2009), an algorithm was proposed to compute a family of selective controls that enables the efficient Hamiltonian identification of quantum systems. These controls are iteratively computed for a given set of linearly independent matrices, whose span form the space where the unknown Hamiltonian is sought. In this paper, we show by direct numerical experiments that the procedure presented in (Salomon 2009) can suffer from a lack of robustness. This is due to the high non-linearity of the problem generated by the bilinear state-control structure and to the fact that the final results strongly depend on the basis matrices chosen before running the algorithm. For this reason, a randomly chosen set of linear independent matrices does not necessarily lead to a set of robust selective fields that allows an accurate identification of the unknown Hamiltonian. To tackle this problem we propose a new optimized version of this algorithm. This new strategy consists in extending the greedy character of the original algorithm in a way that more matrices, not necessarily linearly independent, are tested in a parallelizable fashion. A simple criterion is then used to identify which matrix has to be chosen at each iteration among the tested ones in order to produce the new selective field. Therefore, the new proposed algorithm is capable to choose the set of needed basis matrices and their corresponding order. This strategy leads to the generation of selective fields that guarantee more robustness in the numerical identification of the Hamiltonian. Results of numerical experiments demonstrate the effectiveness of the new proposed algorithm.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Hamiltonian identification, inverse problems, quantum control

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BUCHWALD, Simon, Gabriele CIARAMELLA, Julien SALOMON, 2020. An optimized greedy reconstruction algorithm for dipole momentum operators
BibTex
@techreport{Buchwald2020optim-49210,
  year={2020},
  title={An optimized greedy reconstruction algorithm for dipole momentum operators},
  author={Buchwald, Simon and Ciaramella, Gabriele and Salomon, Julien}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49210">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2020</dcterms:issued>
    <dc:contributor>Buchwald, Simon</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49210"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49210/3/Buchwald_2-125hj4d8zejz47.pdf"/>
    <dc:creator>Buchwald, Simon</dc:creator>
    <dcterms:title>An optimized greedy reconstruction algorithm for dipole momentum operators</dcterms:title>
    <dc:language>eng</dc:language>
    <dc:creator>Ciaramella, Gabriele</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-14T14:44:07Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Salomon, Julien</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-14T14:44:07Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Salomon, Julien</dc:creator>
    <dc:contributor>Ciaramella, Gabriele</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49210/3/Buchwald_2-125hj4d8zejz47.pdf"/>
    <dcterms:abstract xml:lang="eng">In a previous work (Salomon 2009), an algorithm was proposed to compute a family of selective controls that enables the efficient Hamiltonian identification of quantum systems. These controls are iteratively computed for a given set of linearly independent matrices, whose span form the space where the unknown Hamiltonian is sought. In this paper, we show by direct numerical experiments that the procedure presented in (Salomon 2009) can suffer from a lack of robustness. This is due to the high non-linearity of the problem generated by the bilinear state-control structure and to the fact that the final results strongly depend on the basis matrices chosen before running the algorithm. For this reason, a randomly chosen set of linear independent matrices does not necessarily lead to a set of robust selective fields that allows an accurate identification of the unknown Hamiltonian. To tackle this problem we propose a new optimized version of this algorithm. This new strategy consists in extending the greedy character of the original algorithm in a way that more matrices, not necessarily linearly independent, are tested in a parallelizable fashion. A simple criterion is then used to identify which matrix has to be chosen at each iteration among the tested ones in order to produce the new selective field. Therefore, the new proposed algorithm is capable to choose the set of needed basis matrices and their corresponding order. This strategy leads to the generation of selective fields that guarantee more robustness in the numerical identification of the Hamiltonian. Results of numerical experiments demonstrate the effectiveness of the new proposed algorithm.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen